

Delta ∆

- + Δ is the fourth letter in the Greek alphabet
- Used in equations to represent change
- Δv = change in velocity

 Find final velocity, find initial velocity, and subtract
- Δt = change in time, or time interval from beginning to end
- Units of time appear twice in denominator

Acceleration of gravity

- 9.81 m/s² at sea level
- Round off to 10 m/s² for ease of calculation in lecture. Use more precise value for lab
- ...or if you are trying to launch a rocket to space, etc.

1

Acceleration of Gravity

 Free fall of object 	Time	Speed
 Speed increases 	elapsed	(meters/
10 m/s for every	(seconds)	second)
• <u>10 m/s</u> = <u>10m</u> s s ²	0	0
	1	10
	2	20
	3	30
	4	40

Galileo's investigation of motion Surface area changes air resistance Objects reach terminal velocity due to air resistance In vacuum, this is not a factor

