Newton's Laws of Motion

Chapter 2: pages 37-53
Review questions $1,5-10,14,17,21-24,30$

Peer Led Team Learning

Example of $r t=d$ calculation

-ES105x PLTL CRN 21823

-Tuesdays, 7:30 to 9 PM, NS 101

- Jody Berg, senior ES major
who had this class from me
- Please pick up blue sheet and take it to the registrar
- Or attend tonight to see if you want it, and get blue sheet from Jody

$$
\frac{80 \mathrm{~km}}{\mathrm{~h}} \bullet 4 \mathrm{~h}=320 \mathrm{~km}
$$

- Notice that hours cancels because it is above and below the fraction bar

$$
\frac{60 \mathrm{~km} / \mathrm{hor} 4 \mathrm{~h}}{\mathrm{~h}} \cdot 4 \mathrm{~h}=240 \mathrm{~km}
$$

- $60 \mathrm{~km} / \mathrm{h}$ for 10 h

$$
\frac{60 \mathrm{~km}}{\mathrm{~h}} \bullet 10 \mathrm{~h}=600 \mathrm{~km}
$$

Acceleration

- Acceleration $=\frac{\text { Change in velocity }}{\text { Time interval }}$

CHANGE of speed over time, not the RATE of speed

- RATE OF CHANGE

Delta Δ

- Δ is the fourth letter in the Greek alphabet
- Used in equations to represent change
- $\Delta v=$ change in velocity
- Find final velocity, find initial velocity, and subtract
- $\Delta t=$ change in time, or time interval from beginning to end
- Units of time appear twice in denominator

Acceleration of gravity

- $9.81 \mathrm{~m} / \mathrm{s}^{2}$ at sea level
- Round off to $10 \mathrm{~m} / \mathrm{s}^{2}$ for ease of calculation in lecture. Use more precise value for lab
- ...or if you are trying to launch a rocket to space, etc.

Acceleration of Gravity

- Acceleration same for each second of travel
- Free falling objects

Galileo's investigation of motion

- Surface area changes air resistance
- Objects reach terminal velocity due to air resistance
- In vacuum, this is not a factor

Acceleration $a=\frac{25 \mathrm{mi} . / \mathrm{h}}{25 \mathrm{~s}}=1 \mathrm{mi} . / \mathrm{h} \cdot \mathrm{s}$
Notice that time units appear in denominator twice
Because it is an amount of time over which the change of speed occurs
Does not need to be the same units, (but it's neater if it is: could change miles per hour into miles per second...)

Acceleration of Gravity

- Free fall of object	Time
elapsed	\(\quad \begin{aligned} \& Speed

\& (meters\end{aligned}\)

- Speed increases
$10 \mathrm{~m} / \mathrm{s}$ for every
second of fall
- $\underline{10 \mathrm{~m} / \mathrm{s}}=10 \mathrm{~m}$
$\mathrm{s} \quad \mathrm{s}^{2}$

elapsed (seconds)

 meters/ second) \begin{tabular}{|l|l}\hline 0 \& 0

\hline 1
\end{tabular}

2	20
3	30
4	40

Acceleration of Gravity

- Upward throw 30 m/s
- Gravity acts against it
- Slows to stop at $10 \mathrm{~m} / \mathrm{s}^{2}$
- Falls and gains speed at 10
$\mathrm{m} / \mathrm{s}^{2}$
- Neglecting air resistance

Examples of acceleration

- Driving on Monmouth Avenue at $20 \mathrm{mi} . / \mathrm{h}$
- Increase to $45 \mathrm{mi} . / \mathrm{h}$ in 25 seconds-change in speed is:
- Divide change of speed by time

$$
\begin{gathered}
\frac{45 \mathrm{mi} .}{h}-\frac{20 \mathrm{mi} .}{h}= \\
\frac{25 \mathrm{mi} .}{h} \\
a=\frac{25 \mathrm{mi} . / \mathrm{h}}{25 \mathrm{~s}}=1 \mathrm{mi} . / \mathrm{h} \cdot \mathrm{~s}
\end{gathered}
$$

Acceleration

- Car can go from
$\begin{aligned} & \text { stopped to } 90 \mathrm{~km} / \mathrm{h} \text { in } \\ & 10 \text { seconds }\end{aligned} \frac{90 \mathrm{~km} / \mathrm{h}}{10 \mathrm{~s}}$
$\begin{aligned} & \text { - Be sure to REDUCE } \\ & \text { to lowest terms }\end{aligned} \quad=9 \mathrm{~km} / \mathrm{h} \cdot \mathrm{s}$

$$
\left(\frac{90 k m}{h r}=\frac{25 m}{s} \quad \frac{25 m / s}{10 s}=2.5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)
$$

Acceleration

- Bicycle goes from $\underset{\substack{\text { rest to } 5 \mathrm{~km} / \mathrm{h} \text { in } \\ 2.5 \text { seconds }}}{ } \quad \frac{5 \mathrm{~km} / \mathrm{h}}{2.5 \mathrm{~s}}=2 \mathrm{~km} / \mathrm{h} \cdot \mathrm{s}$

$$
\left(\frac{5 k m}{h r}=\frac{1.39 m}{s} \quad \frac{1.39 m / s}{2.5 s}=0.55 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)
$$

Sir Isaac Newton

Second Law of Motion

- "The acceleration of an object is directly proportional to the net force acting on the object, is in the direction of the net force, and is inversely proportional to the mass of the object."
- Means "acceleration" $\sim \frac{\text { Force }}{\text { mass }}$
- "~" (say "is proportional to")

$$
a=\frac{F}{m}
$$

- If there is double the force
- Also need to double the mass
- To maintain constant acceleration
- Direct proportion-constant ratio

Acceleration
- Change in velocity over time $\quad \boldsymbol{a}=\frac{\Delta \boldsymbol{v}}{\boldsymbol{t}}$
$\boldsymbol{a}=\frac{F}{m}$
- Force over mass AND velocity over time?
- How can this be?

Acceleration

Force causes acceleration Force over mass

Solve for the force:

