Fossil Fuels, Chemistry of Fuels

Energy sources
- Wood—chemical energy stored by plants
- Kinetic energy—
 - Water power to grind grain
 - Wind to pump water
- Fossil fuels

Sun’s Energy
- Radiant energy
 - Released by fusion
 - Hydrogen fused into Helium
- 1.73 x 10^{17} watts received by Earth from Sun
- 99+% of Earth’s energy
- Converted by plants into chemical energy

Photosynthesis
6 CO\textsubscript{2} + 6 H\textsubscript{2}O + sun energy \rightarrow C\textsubscript{6}H\textsubscript{12}O\textsubscript{6} + 3 O\textsubscript{2}
- Converts CO\textsubscript{2} and H\textsubscript{2}O to sugar and O\textsubscript{2}
- Created the level of oxygen present in today’s atmosphere
- Ancient algae in Archean and Proterozoic oceans released O\textsubscript{2} by photosynthesis

Energy and Chemical Reactions
- Heat released or consumed in chemical reactions
- Measured in calories
 - Food ‘calorie’ is a kilocalorie (kcal)
 - 1 Joule = 0.24 calories
- Energy shown in equation
 - C\textsubscript{3}H\textsubscript{8} + 5 O\textsubscript{2} \rightarrow 3 CO\textsubscript{2} + 4 H\textsubscript{2}O + 526 kcal

Reaction energy
EXOTHERMIC
heats up environment
ENDOTHERMIC
absorbs heat from environment

Conservation of Energy
- Energy is not created or destroyed
- First Law of Thermodynamics

Heat Flow
- From objects with higher temperature to those with lower temperature
- Second law of thermodynamics

Implications of laws
- Change form from high quality to lower quality
 - Chemical energy to heat energy
 - Friction: mechanical to heat
- Energy wasted as frictional heat
- Need to put energy in to ‘make’ cold
Fossil fuels
- Burn readily
- Reaction is oxidation
- Release heat energy

Fossil fuels
- Coal
- Petroleum
- Natural Gas

First law of thermodynamics
- Conservation of energy
- Cannot create or destroy energy
- (But we can convert to less-useful form)

Fossil fuels
- Non renewable
- From ancient organisms
- Extracted from Earth

Carboniferous Period Forest

Coal formation 1

Coal formation 2

Coal formation 3

Coal formation 4

http://palaeos.com/Paleozoic/Carboniferous/Carboniferous.htm
Coal

\[C + O_2 \rightarrow CO_2 \]

- Anthracite
- Bitumen
- Lignite

Coal

- Incompletely decayed plants
- Burial pressure releases \(O_2 \) and \(H_2 \)
- Carbon remains
- Paleozoic—Pennsylvania coal, Carboniferous Period

Coal

- Must be mined
- Pollutants in coal
 - Sulfur leads to acid rain
 - Also contains mercury, arsenic, nitrates

Hydrocarbon System

- Shale with organic material
- Gooey sludge on ocean floor

SOURCES

- Zooplankton
 - Planktonic organisms
 - Probable source of petroleum

COOKING

- Just right temperature
- Just right pressure
- Just right time

RESERVOIR

- Porous
- Permeable
- Usually a sedimentary rock

POROUS

- Has open space
- Sponge
PERMEABLE
- Permits fluid throughflow
- Nylon scrubbie

RESERVOIR
- Permeable
- and Porous

TRAP
- Almost no permeability or pore space
- Shale (Usually not source shale)

STYLES OF TRAPS
- Structural
- Stratigraphic

STRUCTURAL TRAP
- Reservoir sand
- Capping shale
- Arched fold

STRUCTURAL TRAP
- Reservoir exists
- Fault creates trap

STRATIGRAPHIC TRAP
- Channel sand
- Shifting channel of river
- Shale above caps reservoir

STRATIGRAPHIC TRAP
- Deposition of sand
- Shale deposited above sand
 - Deltas
 - Invading seas
UNCONFORMITY TRAP
- Reservoir rock tilted and eroded
- Impermeable rock deposited above erosion surface

Natural Gas
- Mostly methane
 \[\text{CH}_4 + 2 \text{O}_2 \rightarrow \text{CO}_2 + 2 \text{H}_2\text{O} + \text{heat} \]
- Excellent, clean-burning fuel
- Raw material for plastics and other chemicals

Petroleum
- Replaced coal by about 1950
- Complex hydrocarbon molecules
- Derived from fats
- Combustion products are carbon dioxide and water

Petroleum
- \[2\text{C}_8\text{H}_{18} + 25 \text{O}_2 \rightarrow 16 \text{CO}_2 + 18 \text{H}_2\text{O} \]
- Also contains some sulfur compounds
- Fuel oil is fairly clean
- Burning gasoline results in smog
 - Internal combustion engines inefficient

Petroleum Requirements
- Source
- Cooking
- Reservoir
- Trap

TITUSVILLE, PA
- Oil Creek Valley in the 1860s
- Phillips well (rt) 4000 bbl/day
- Woodford well (lt) 1500 bbl/day

Texas Oil
- Lucas Gusher, 1901
- Initial production 100,000 bbl/day
- Salt dome traps

Spindletop Salt Dome
- Lucas Gusher, 1901
- Initial production 100,000 bbl/day
- Salt dome traps
Boiler Avenue
On Spindletop salt dome at Beaumont, Texas

Signal Hill, Long Beach, CA
1932

Drilling on the North Slope

Drilling in the North Sea

Top 10 Countries—Oil Statistics
- Reserves
- Consumption
 - http://www.nationmaster.com/graph/T/ene_oil_con&int=10

Source of energy not from Sun
- Rare deep sea vent communities
- Sulfurous hot springs supports bacteria
- Other organisms subsist on bacteria
- Larger creatures can survive on the bacteria-eating organisms