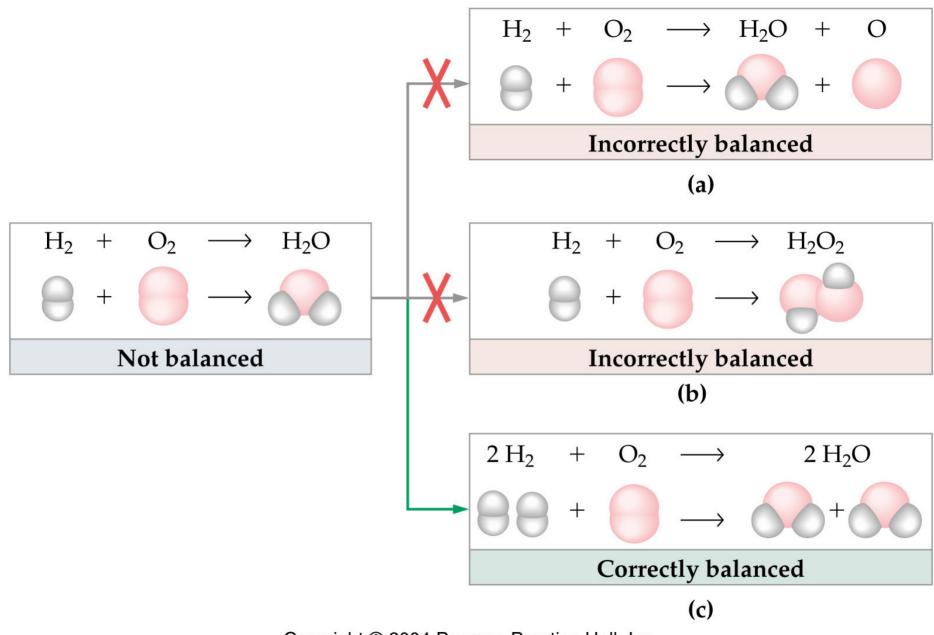
Chemical Reactions


Chapter 17

Chemical Equations

- C+O₂ \rightarrow CO₂
- $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$
- Reactants on left, products on right
- Each are balanced because same number of atoms of reactants as products
- Some equations show the phase of the substances also: solid, liquid, gas

Balancing Chemical Equations

- Molecules of reactants and products shown—
 - Cannot change the molecule
 - Can change how many of them
- Cannot add or delete reactants or products
- Balanced—equal number of same atoms on each side

Copyright © 2004 Pearson Prentice Hall, Inc.

Balancing Tips

- Never change the molecular formula of reactants or products
- Count atoms in reactant and products
- Always add whole molecules, not parts
- Start by balancing atoms in compounds
- Save element reactants or products for last—to make up any imbalance

Rusting of Iron

• Fe + $O_2 \rightarrow Fe_2O_3$

not balanced

- start with oxygen
- Fe + 3 $O_2 \rightarrow 2 Fe_2O_3$
- next do iron
- 4 Fe + 3 $O_2 \rightarrow 2$ Fe₂ O_3

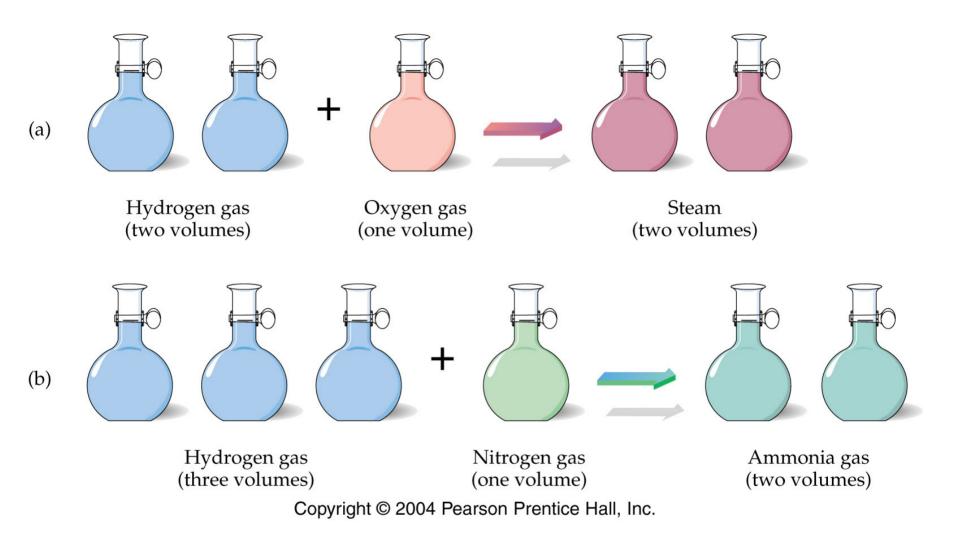
Problem 1 in class

Balance the following equation, on the worksheet provided. (Put your name on the back of the sheet, please.)

$N_2 + H_2 \rightarrow NH_3$

Combustion of propane

- $C_3H_8 + O_2 \rightarrow CO_2 + H_2O$
- fix hydrogen first—it's in two compounds
- $C_3H_8 + O_2 \rightarrow CO_2 + 4H_2O$
- need more carbon product
- $C_3H_8 + O_2 \rightarrow 3CO_2 + 4H_2O$
- Do oxygen last, because it is single
- $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$


Problem 2 in class

Balance the following chemical equation, the combustion of methane

 $CH_4 + O_2 \rightarrow$ Methane oxygen

Volume Relationships

- Equal volumes of gases at the same temperature and pressure have the same number of molecules
- Gases react in small whole number quantities
- Avogadro's hypothesis: chemicals react in consistent, small whole number ratios

Combustion of propane $C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$

- What volume of oxygen is needed to burn 0.5 L of propane?
- Ratio of Oxygen molecules to propane molecules is 5:1
- $0.5 L \times 5LO_2 = 2.5 L Oxygen$ 1 L Propane

Problem 3 in class

Combustion of propane

 $C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$

Calculate how much CO_2 is produced when 2 L of propane is burned

Atomic vs. Molecular Weight

- Atomic weight on periodic table is average of natural abundance of isotopes
- Atomic mass is the number of nucleons in a particular atom—specified by isotope
- Molecular mass is the mass of one mole of molecules
 - One atomic mass number of grams
 - 6.0221367x10²³ molecules

Calculate Molecular Mass

- O atomic weight 15.9996 (round to 16 for this class)
- O-16 atomic mass 16 u
- Molecular oxygen O₂ atomic mass 32 u
- Molecular O₂ molecular mass 32 g/mole
- CO₂ molecular mass
 - C=12 g/mole, O₂=32 g/mole
 - CO₂=12+32=44 g/mole

Problem 4 in class

- Calculate the molar mass of propane C_3H_8
- Round atomic weight of C to 12 $\frac{g}{mole}$
- Round atomic weight of H to 1 $\frac{g}{mole}$

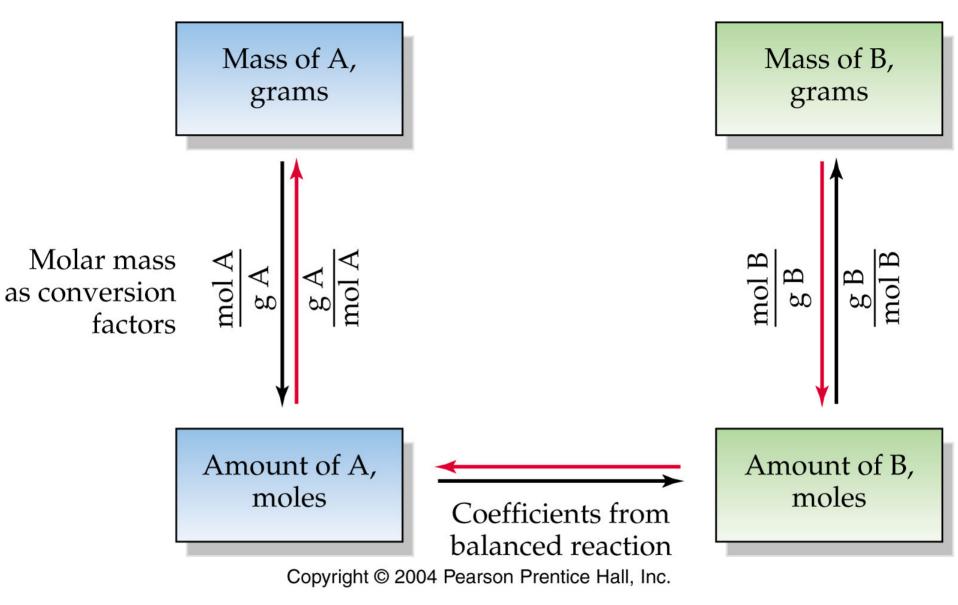
Grams calculated from Moles

- Can find the molar mass of substance
 - Na=23 ^g/_{mole}
 ¹/₄ mole of Na
- Multiply molar mass times moles
- $23 \frac{g}{mole}$ x 0.250 moles = 5.75 g

Moles calculated from Grams

- 176 g of CO_2 = Number of moles?
- Molar mass of $CO_2 = 44 \frac{g}{mole}$
- If you multiply,
 - 176 g x 44 $\frac{g}{mole}$ results in units of $\frac{g^2}{mole}$
 - you get a unit mess
- UNITS alert you that you made an error
- KEEP UNITS WITH NUMBERS!!

Moles calculated from Grams

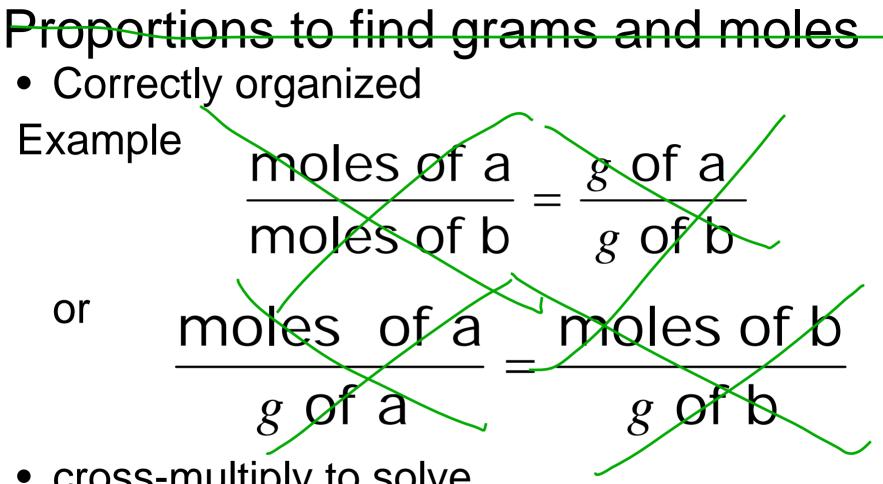

- 176 g of CO_2 = Number of moles?
- Molar mass of $CO_2 = 44 \frac{g}{mole}$
- Divide 176 g by 44 $\frac{g}{mole}$
- Same as multiply by reciprocal

176 g x
$$\left(\frac{1 \text{ mole}}{44 \text{ g}}\right) = 4 \text{ moles } CO_2$$

• Now the grams cancel =)

Problem 5 in class

132 g of propane is how many moles?



To convert between grams and moles

- Make sure equation is balanced
- So you know the molar ratios of them
- Find molar mass of them
- Set up proportions for moles and grams

Proportions

- Mathematical device to compare ratios
- Cross-multiply to solve
- Correctly organized
- Be sure you keep same:same in columns and rows

cross-multiply to solve

Proportions

- Correctly organized
- It doesn't matter how you write the first ratio, as long as you label the numbers
- Try to put unknown on the top—easier to solve
- The second ratio needs to match the first

Problem $NO + O_2 \rightarrow NO_2$

- 64 grams O₂
- How many grams NO₂ produced?

First: Balance Equation

$2NO + O_2 \rightarrow 2NO_2$

Problem $2NO + O_2 \rightarrow 2NO_2$

- 64 grams O₂
- How many grams NO₂ produced?

Balance Equation Determine molar ratios of them 1:2 Find molar mass of each component $NO_2=46 \text{ g}, O_2=32 \text{ g}, (NO=30 \text{ g})$

Problem $2NO + O_2 \rightarrow 2NO_2$

- 64 grams O₂
- How many grams NO₂ produced?

Molar mass of each: $O_2=32$ g, $NO_2=46$ g

How many moles is 64 grams O_2 ? One mole

Problem $2NO + O_2 \rightarrow 2NO_2$

- 64 grams O₂
- How many grams NO₂ produced?
- Molar mass of each $O_2=32$ g, $NO_2=46$ g Molar ratios O₂:NO₂ is 1:2 Two mole of O_2 So four moles of NO₂ is produced How many grams is that? 4 mol x 46 g/mol = 184 grams

Problem $H_2S + O_2 \rightarrow SO_2 + H_2O$

- 32 grams SO₂
- How many grams O₂ used?

- 32 grams SO₂
- **Problem** How many grams O₂ used?
- $H_2S + O_2 \rightarrow SO_2 + H_2O$
- Balance first

- Then determine molar ratios
- 2 SO₂ to 3 O₂

- 32 grams SO₂
- Problem How many grams O₂ used?

- Find molar masses
 - SO₂ = 32 + 32 =
 - $\bullet O_2 = (2x1) + 16 =$
 - $H_2O=(2x1)+16 =$
 - $H_2S = (2x1) + 32 =$

- 64 g/mol SO₂
- 32 g/mol O₂
- 18 g/mol H₂O
- $34 \text{ g/mol H}_2\text{S}$

32 grams SO₂

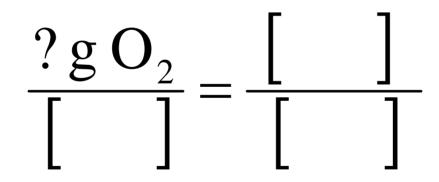
• How many grams O₂ used?

- 32 g SO₂ needs how many grams O_2 ?
- How many moles is 32 g SO₂?

$$32 g SO_2 \cdot \frac{1 mole}{64 g} = 0.5 moles SO_2$$

• 32 grams SO₂

Problem • How many grams O₂ used?


- How many moles O₂ is needed?
- 0.5 moles SO_2 in 2:3 ratio with O_2
- 0.75 moles O₂

$$32 \operatorname{g} \operatorname{SO}_2 \cdot \frac{1 \operatorname{mole}}{64 \operatorname{g}} = 0.5 \operatorname{moles} \operatorname{SO}_2$$

32 grams SO₂

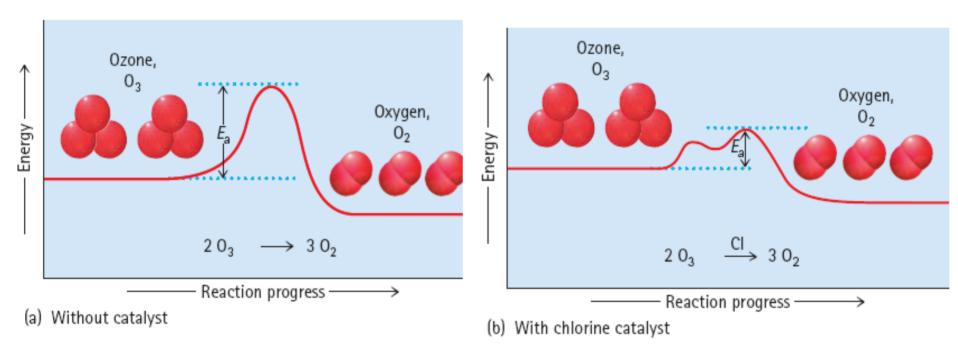
Set up • How many grams O₂ used? proportion

with the unknown on top (the O_2)

Problem 6 $C + O_2 \rightarrow CO_2$

Is it balanced?

Molar ratio 1:1:1


- 4 grams oxygen
 - Grams carbon consumed?
 - Grams carbon dioxide produced?

Reaction Speed

Collision of molecules required for it to occur

- Increase concentration
- Increase temperature
- Catalyst can facilitate reaction

Chlorine catalyst

Energy of reactions

- Release energy
- EXOTHERMIC
- Methane combustion

- Consume energy
- ENDOTHERMIC
- Formation of water