Chemical Reactions

Chapter 17

Problem 1 in class

Balance the following equation, on the worksheet provided. (Put your name on the back of the sheet, please.)

$$
\mathrm{N}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}
$$

Problem 1 in class
Balance the following equation, on the worksheet provided. (Put your name on the back of the sheet, please.)
$\mathrm{N}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}$

Chemical Equations

- $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
- $\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}$
- Reactants on left, products on right
- Each are balanced because same number of atoms of reactants as products
- Some equations show the phase of the substances also: solid, liquid, gas
- Never change the molecular formula of reactants or products
- Count atoms in reactant and products
- Always add whole molecules, not parts
- Start by balancing atoms in compounds
- Save element reactants or products for last-to make up any imbalance

Combustion of propane

- $\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
- fix hydrogen first-it's in two compounds
- $\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
- need more carbon product
- $\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
- Do oxygen last, because it is single
- $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

Rusting of Iron

Balancing Chemical Equations

- Molecules of reactants and products shown-
- Cannot change the molecule
- Can change how many of them
- Cannot add or delete reactants or products
- Balanced—equal number of same atoms on each side
- start with oxygen
- $\mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}$
- next do iron
- $4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}$

Volume Relationships

- Equal volumes of gases at the same temperature and pressure have the same number of molecules
- Gases react in small whole number quantities
- Avogadro's hypothesis: chemicals react in consistent, small whole number ratios

Problem 3 in class

- Combustion of propane

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

Calculate how much CO_{2} is produced when 2 L of propane is burned

Atomic vs. Molecular Weight

- Atomic weight on periodic table is average of natural abundance of isotopes
- Atomic mass is the number of nucleons in a particular atom-specified by isotope
- Molecular mass is the mass of one mole of molecules
- One atomic mass number of grams
$-6.0221367 \times 10^{23}$ molecules

Combustion of propane

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

- What volume of oxygen is needed to burn 0.5 L of propane?
- Ratio of Oxygen molecules to propane molecules is $5: 1$
- $0.5 \mathrm{~L} \times \underline{5 \mathrm{~L} \mathrm{O}_{2}}=2.5 \mathrm{~L}$ Oxygen 1 L Propane

Calculate Molecular Mass

- O atomic weight 15.9996 (round to 16 for this class)
- O-16 atomic mass 16 u
- Molecular oxygen O_{2} atomic mass 32 u
- Molecular O_{2} molecular mass $32 \mathrm{~g} / \mathrm{mole}$
- CO_{2} molecular mass
- $\mathrm{C}=12 \mathrm{~g} / \mathrm{mole}, \mathrm{O}_{2}=32 \mathrm{~g} / \mathrm{mole}$
- $\mathrm{CO}_{2}=12+32=44 \mathrm{~g} / \mathrm{mole}$

Grams calculated from Moles

- Can find the molar mass of substance
- $\mathrm{Na}=23 \frac{\mathrm{~g}}{\text { mole }}$
- $\frac{1}{4}$ mole of Na
- Multiply molar mass times moles
- $23 \frac{\mathrm{~g}}{\text { mole }} \times 0.250$ moles $=5.75 \mathrm{~g}$

Moles calculated from Grams

- $176 \mathrm{~g} \mathrm{of}^{\mathrm{CO}_{2}}=$ Number of moles?
- Molar mass of $\mathrm{CO}_{2}=44 \frac{\mathrm{~g}}{\text { mole }}$
- If you multiply,
- $176 \mathrm{~g} \times 44 \frac{\mathrm{~g}}{\text { mole }}$ results in units of $\frac{\mathrm{g}^{2}}{\text { mole }}$
- you get a unit mess
- UNITS alert you that you made an error
- KEEP UNITS WITH NUMBERS!!

Moles calculated from Grams

- 176 g of $\mathrm{CO}_{2}=$ Number of moles?

Problem 5 in class

132 g of propane is how many moles?

- Molar mass of $\mathrm{CO}_{2}=44 \frac{\mathrm{~g}}{\text { mole }}$

Divide 176 g by $44 \frac{\mathrm{~g}}{\text { mole }}$

- Same as multiply by reciprocal

$$
176 \mathrm{~g} \mathrm{x}\left(\frac{1 \text { mole }}{44 \mathrm{~g}}\right)=4 \text { moles } \mathrm{CO}_{2}
$$

- Now the grams cancel =)

To convert between grams and moles

- Make sure equation is balanced
- So you know the molar ratios of them
- Find molar mass of them
- Setuppropotions iot troves-andgrame

Proportions

- Correctly organized
- It doesn't matter how you write the first ratio, as long as you label the numbers
- Try to put unknown on the top-easier to solve
- The second ratio needs to match the first

Proportions

- Mathematical device to compare ratios
- Cross-multiply to solve
- Correctly organized
- Be sure you keep same:same in columns and rows

Proportions to find grams and moles

- Correctly organized

Example

- cross-multiply to solve

Problem

$$
2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}
$$

- 64 grams O_{2}
- How many grams NO_{2} produced?

Balance Equation

Determine molar ratios of them 1:2 Find molar mass of each component $\mathrm{NO}_{2}=46 \mathrm{~g}, \mathrm{O}_{2}=32 \mathrm{~g},(\mathrm{NO}=30 \mathrm{~g})$

Problem $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$

- 64 grams O_{2}
- How many grams NO_{2} produced?

Molar mass of each: $\mathrm{O}_{2}=32 \mathrm{~g}, \mathrm{NO}_{2}=46 \mathrm{~g}$
How many moles is 64 grams O_{2} ? One mole

- 32 grams SO_{2}

Problem • How many grams O_{2} used?
$\mathrm{H}_{2} \mathrm{~S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}$

- Balance first
$2 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
- Then determine molar ratios
- $2 \mathrm{SO}_{2}$ to $3 \mathrm{O}_{2}$
- 32 grams SO_{2}

Problem • How many grams O_{2} used?

$$
2 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

- How many moles O_{2} is needed?
- 0.5 moles SO_{2} in 2:3 ratio with O_{2}
- 0.75 moles O_{2}
$32 \mathrm{~g} \mathrm{SO}_{2} \cdot \frac{1 \text { mole }}{64 \mathrm{~g}}=0.5$ moles SO_{2}

Problem $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$

- 64 grams O_{2}
- How many grams NO_{2} produced?
- Molar mass of each $\mathrm{O}_{2}=32 \mathrm{~g}, \mathrm{NO}_{2}=46 \mathrm{~g}$

Molar ratios $\mathrm{O}_{2}: \mathrm{NO}_{2}$ is $1: 2$
Two mole of O_{2}
So four moles of NO_{2} is produced How many grams is that? $4 \mathrm{~mol} \times 46 \mathrm{~g} / \mathrm{mol}=184$ grams

- 32 grams SO_{2}

$$
\begin{gathered}
\text { Problem } \\
\mathrm{H}_{2} \mathrm{~S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

- How many grams O_{2} used?

Problem

- 32 grams SO_{2}
$2 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
- Find molar masses
- $\mathrm{SO}_{2}=32+32=64 \mathrm{~g} / \mathrm{mol} \mathrm{SO}_{2}$
- $\mathrm{O}_{2}=(2 \times 1)+16=32 \mathrm{~g} / \mathrm{mol} \mathrm{O}_{2}$
- $\mathrm{H}_{2} \mathrm{O}=(2 \times 1)+16=18 \mathrm{~g} / \mathrm{mol} \mathrm{H}_{2} \mathrm{O}$
- $\mathrm{H}_{2} \mathrm{~S}=(2 \times 1)+32=34 \mathrm{~g} / \mathrm{mol} \mathrm{H}_{2} \mathrm{~S}$ proportion
with the unknown on top (the O_{2})

Problem

- 32 grams SO_{2}
- How many grams O_{2} used?
$2 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
- $32 \mathrm{~g} \mathrm{SO}_{2}$ needs how many grams O_{2} ?
- How many moles is $32 \mathrm{~g} \mathrm{SO}_{2}$?
$32 \mathrm{~g} \mathrm{SO}_{2} \cdot \frac{1 \text { mole }}{64 \mathrm{~g}}=0.5$ moles SO_{2}

Problem $6 \quad \mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$

Is it balanced?

Molar ratio 1:1:1
4 grams oxygen

- Grams carbon consumed?
- Grams carbon dioxide produced?

Reaction Speed
Collision of molecules required for it to occur

- Increase concentration
- Increase temperature
- Catalyst can facilitate reaction

Energy of reactions

- Release energy
- EXOTHERMIC
- Methane combustion
- Consume energy
- ENDOTHERMIC
- Formation of water

