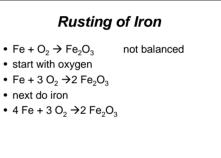
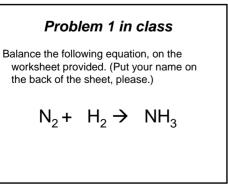


Chemical Equations

- C+O₂→CO₂
- C_(s) +O_{2 (g)} →CO_{2 (g)}
- Reactants on left, products on right
- Each are balanced because same number of atoms of reactants as products
- Some equations show the phase of the substances also: solid, liquid, gas


Balancing Chemical Equations

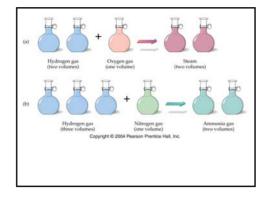

- Molecules of reactants and products shown—
 - Cannot change the molecule
 - Can change how many of them
- Cannot add or delete reactants or products
- Balanced—equal number of same atoms on each side

Balancing Tips

- Never change the molecular formula of reactants or products
- Count atoms in reactant and products
- Always add whole molecules, not parts
- · Start by balancing atoms in compounds
- Save element reactants or products for last—to make up any imbalance

Combustion of propane

- $C_3H_8 + O_2 \rightarrow CO_2 + H_2O$
- fix hydrogen first-it's in two compounds
- $C_3H_8 + O_2 \rightarrow CO_2 + 4H_2O$
- need more carbon product
- $C_3H_8 + O_2 \rightarrow 3 CO_2 + 4 H_2O$
- Do oxygen last, because it is single
- $C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O_2$


Problem 2 in class

Balance the following chemical equation, the combustion of methane

 $CH_4 + O_2 \rightarrow$ Methane oxygen

Volume Relationships

- · Equal volumes of gases at the same temperature and pressure have the same number of molecules
- · Gases react in small whole number quantities
- · Avogadro's hypothesis: chemicals react in consistent, small whole number ratios

Combustion of propane

 $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$

- What volume of oxygen is needed to burn 0.5 L of propane?
- Ratio of Oxygen molecules to propane molecules is 5:1
- $0.5 L x 5 L O_2 = 2.5 L Oxygen$ 1 L Propane

Problem 3 in class

· Combustion of propane $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$

Calculate how much CO₂ is produced when 2 L of propane is burned

Atomic vs. Molecular Weight

- Atomic weight on periodic table is average of natural abundance of isotopes
- Atomic mass is the number of nucleons in a particular atom-specified by isotope
- Molecular mass is the mass of one mole of molecules
 - One atomic mass number of grams
 - 6.0221367x1023 molecules

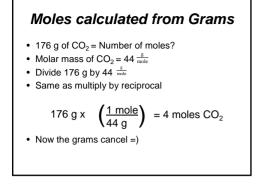
Calculate Molecular Mass

- · O atomic weight 15.9996 (round to 16 for this class)
- O-16 atomic mass 16 u
- Molecular oxygen O₂ atomic mass 32 u
- Molecular O₂ molecular mass 32 g/mole
- CO₂ molecular mass
 - C=12 g/mole, O₂=32 g/mole
 - CO₂=12+32=44 g/mole

Problem 4 in class

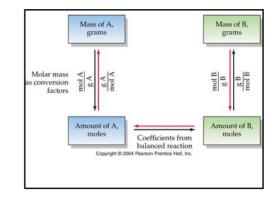
- Calculate the molar mass of propane C₃H₈
- Round atomic weight of C to $12 \frac{g}{mole}$
- Round atomic weight of H to 1 $\frac{g}{mole}$

Grams calculated from Moles


· Can find the molar mass of substance

• Na=23 $\frac{g}{mole}$ • $\frac{1}{4}$ mole of Na

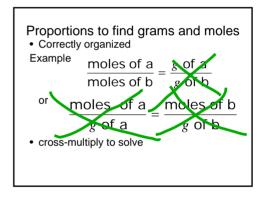
- · Multiply molar mass times moles
- $23 \frac{g}{mole}$ x 0.250 moles = 5.75 g


Moles calculated from Grams

- 176 g of CO₂ = Number of moles?
- Molar mass of $CO_2 = 44 \frac{g}{mola}$
- If you multiply,
 - 176 g x 44 $\frac{g}{\text{mole}}$ results in units of $\frac{g^2}{\text{mole}}$
 - you get a unit mess
- UNITS alert you that you made an error
- KEEP UNITS WITH NUMBERS!!

Problem 5 in class

132 g of propane is how many moles?



To convert between grams and moles

- · Make sure equation is balanced
- So you know the molar ratios of them
- · Find molar mass of them
- Set up proportions for moles and grams

Proportions

- Mathematical device to compare ratios
- Cross-multiply to solve
- Correctly organized
- Be sure you keep same:same in columns and rows

Proportions

- Correctly organized
- It doesn't matter how you write the first ratio, as long as you label the numbers
- Try to put unknown on the top—easier to solve
- The second ratio needs to match the first

Problem
$$NO + O_2 \rightarrow NO_2$$

64 grams O₂

• How many grams NO₂ produced?

First: Balance Equation

$$2NO + O_2 \rightarrow 2NO_2$$

Problem
$$2NO + O_2 \rightarrow 2NO_2$$

• 64 grams O₂
• How many grams NO₂ produced?
Balance Equation
Determine molar ratios of them 1:2
Find molar mass of each component
NO₂=46 g, O₂=32 g, (NO=30 g)

Problem
$$2NO + O_2 \rightarrow 2NO_2$$

• 64 grams O₂
• How many grams NO₂ produced?
Molar mass of each: O₂=32 g, NO₂=46 g
How many moles is 64 grams O₂?
One mole

Problem
$$2NO + O_2 \rightarrow 2NO$$

64 grams O₂

- How many grams NO₂ produced?
- + Molar mass of each $O_2{=}32~g,\,NO_2{=}46~g$

Molar ratios O_2 :NO₂ is 1:2 Two mole of O_2 So four moles of NO₂ is produced How many grams is that? 4 mol x 46 g/mol = 184 grams

Problem

$$H_2S + O_2 \rightarrow SO_2 + H_2O$$

• 32 grams SO₂
• How many grams O₂ used?

• 32 grams SO₂
Problem • How many grams O₂ used?

$$H_2S + O_2 \rightarrow SO_2 + H_2O$$

• Balance first
 $2H_2S + 3O_2 \rightarrow 2SO_2 + 2H_2O$
• Then determine molar ratios
• 2 SO₂ to 3 O₂

• 32 grams SO₂
• How many grams O₂ used?

$$2H_2S + 3O_2 \rightarrow 2SO_2 + 2H_2O$$

• Find molar masses
• SO₂ = 32 + 32 = 64 g/mol SO₂
• O₂ = (2x1) +16 = 32 g/mol O₂
• H₂O= (2x1) +16 = 18 g/mol H₂O
• H₂S = (2x1) +32 = 34 g/mol H₂S

Problem
• 32 grams SO₂
• How many grams O₂ used?

$$2H_2S + 3O_2 \rightarrow 2SO_2 + 2H_2O$$

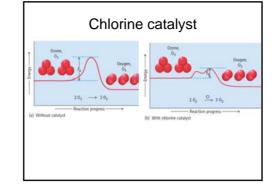
• 32 g SO₂ needs how many grams O₂?
• How many moles is 32 g SO₂?
 $32 \text{ g SO}_2 \cdot \frac{1 \text{ mole}}{64 \text{ g}} = 0.5 \text{ moles SO}_2$

• 32 grams SO₂
Problem • How many grams O₂ used?

$$2H_2S + 3O_2 \rightarrow 2SO_2 + 2H_2O$$

• How many moles O₂ is needed?
• 0.5 moles SO₂ in 2:3 ratio with O₂
• 0.75 moles O₂
 $32 \text{ g SO}_2 \cdot \frac{1 \text{ mole}}{64 \text{ g}} = 0.5 \text{ moles SO}_2$

Set up
proportion
• 32 grams SO₂
• How many grams O₂ used?
• With the unknown on top (the O₂)


$$\frac{2 g O_2}{2} = \frac{2 g O_2}{2}$$

Problem 6
$$C + O_2 \rightarrow CO_2$$
Is it balanced?
Molar ratio 1:1:1
4 grams oxygen
• Grams carbon consumed?
• Grams carbon dioxide produced?

Reaction Speed

Collision of molecules required for it to occur

- Increase concentration
- Increase temperature
- Catalyst can facilitate reaction

Energy of reactions

- Release energy
- EXOTHERMIC
- Methane combustion
- Consume energy
- ENDOTHERMIC
- Formation of water