I. Free falling objects and the equations to calculate velocity and distance
A. The acceleration due to gravity is (on average) $9.81 \mathrm{~m} / \mathrm{s}^{2}$

1. Round to $10 \mathrm{~m} / \mathrm{s}^{2}$ in classroom discussions, examples, homework
2. The more precise number is used in lab
3. Variables in equations
a. \boldsymbol{a} is used to represent acceleration in equations
b. $\quad \boldsymbol{g}$ is used in equations to represent the acceleration of gravity acting on falling objects
B. How fast is the object going after a certain amount of time that if falls
4. gains speed for each second it falls- $10 \mathrm{~m} / \mathrm{s}$ for each second
5. calculate how fast by the equation $v=g t$
6. this is its instantaneous velocity, not its average velocity
7. objects tossed upward slow down at this acceleration too
II. Projectile motion
A. involves objects moving along curved paths
8. horizontal movement are constant velocity motions
9. vertical movements are accelerated motions
10. independent of one another
B. object projected by some means that continues in motion under influence of gravity. Separate investigation of horizontal and vertical motion
11. horizontal neglecting friction,
a. no change in velocity
b. equal distances in equal times
c. no acceleration
12. vertical like freely falling objects,
a. accelerate due to gravity
b. velocity changes
c. falls farther during each successive time interval
13. each component act independently of one another
C. ball rolling forward and continues off the tabletop
14. see ball from top-
a. horizontal movement
b. not affected by vertical I movement
c. does not affect vertical movement
15. see ball from front-
a. vertical movement
b. not affected by horizontal movement
c. does not affect horizontal movement
D. projectile moving upward initially, in addition to forward
16. without gravity or friction
a. it would continue upward diagonally
b. we will ignore friction
17. gravity acts vertically, independent of horizontal velocity
a. falling from the 'no gravity' path
b. just as far as if it had been dropped from the 'no gravity' path at the instant it was launched upward in the gravity environment
18. no acceleration in horizontal direction after it is fired
a. moves equal distance forward for each time interval
b. there is no forward acceleration, only speed
19. the vectors of horizontal and vertical velocity represent these
III. Projectile examples
A. Cannonball
20. without gravity
21. gravity is external force
a. horizontal acceleration is zero-no change in speed
b. vertical acceleration is $\sim 10 \mathrm{~m} / \mathrm{s}^{2}$
B. airplane and package problem
22. $40 \mathrm{~m} / \mathrm{s}$ forward velocity of plane and package
23. falls to directly below the plane
C. cannonball shot at angle
24. path diagonal without gravity
25. path parabola with gravity
D. Monkey and zookeeper animations
26. Without gravity—straight to him
27. With gravity-fast shot
28. With gravity-slower shot
E. calculate how fast cannon ball is going in vertical and horizontal direction
29. horizontal speed constant
30. vertical speed varies with time
31. overall speed calculated with vectors of each, added together
IV. Projectile Range
A. Steepness affects how long it is in the air
32. complementary angles have same range
33. greatest range at 45° angle
B. vertical speed is zero at top of trajectory
C. consider air resistance
V. Calculations of speed
A. Baseball from 5 m platform
34. know height and distance of throw
35. know vertical $d=(1 / 2) g^{2}, g$, and d
36. find t to fall
37. divide horizontal distance by t
B. Curvature of Earth $=5 \mathrm{~m}$ vertical for each 8000 m horizontal
38. if you could throw $8000 \mathrm{~m} / \mathrm{s}$, ball would never reach the ground
39. same principle for orbiting objects
VI. Rotational speed
A. Directly proportional to distance from center of rotation
B. Cones roll in circles
40. smaller diameter goes slower, less distance in one rotation
41. greater diameter goes faster, further in one rotation
42. this is why train wheels are made like they are
