ES 105 Mass Wasting

- I. Gravity is relentless
 - A. Define mass wasting: downslope movement of material under the direct influence of gravity
 - B. Styles of mass wasting vary from imperceptible to catastrophic
 - 1. all can be damaging
 - 2. some are very dangerous
 - C. Step of surface processes after weathering
 - 1. transfer debris downslope to streams
 - 2. to be transported to deposition site—usually ocean, eventually
 - D. slopes change through time
 - 1. lowers surfaces over time
 - 2. internal processes continually raise material to be eroded
 - a. catastrophic events occur in rugged, newly uplifted areas
 - b. cessation of uplift allows mass wasting to conquer heights
- II. Controls of mass wasting
 - A. Gravity is the controlling force,
 - B. factors that influence movement
 - 1. water
 - a. rainfall destroys cohesion of particles—lubricates material
 - b. adds weight to mass
 - 2. oversteepened slopes
 - a. Angle of repose
 - 1) Steepest angle at which a material remains stable
 - 2) Depends on shape and size of particles
 - b. Examples
 - 1) streams undercut on outer curves
 - 2) waves erode the base of cliff
 - 3) roadcuts, building sites also undercut base of slope
 - 4) addition of material to the upper portion of slopes
 - 3. removal of vegetation
 - a. role of vegetation in slope stability
 - 1) roots hold soil in place
 - 2) provide protection of ground surface against splash effects
 - 3) absorb some of moisture to minimize lack of cohesion
 - b. removal
 - 1) wildfires
 - 2) development, farming, logging
 - 4. triggering events
 - a. material may exist in unstable state without sliding
 - b. ground shaking by earthquakes may trigger slide to occur
 - c. can cause great amounts of destruction

- III. Classifying mass wasting processes
 - A. Classified by
 - 1. type of material involved
 - 2. type of motion involved
 - 3. how fast movement occurs
 - B. Types of mass wasting
 - 1. slump
 - a. downward sliding of rock or unconsolidated material moving as a coherent mass
 - b. characterized by headward scarp, tilted rotated blocks
 - c. cause: undercutting of slope
 - 2. Rockslide
 - a. Sudden, rapid
 - b. Bedrock breaks loose and thunders downslope
 - c. Rockfall, topple,
 - d. Causes:
 - 1) by snowmelt, or frost wedging
 - 2) earthquakes
 - 3. Debris flow
 - a. Rapid, fluid movement with large amount of water
 - b. Follow canyons and stream channels
 - c. Causes: (Sudden) addition of water
 - 1) Protracted rainfall where loose material available
 - 2) Cloudburst in desert area
 - 3) Snowmelt on volcanic peaks
 - 4. Earth flow
 - a. Less water, more earth than debris flows
 - b. May continue slowly for days to years—(forever?)
 - c. Liquefaction is type of earthflow caused by earthquakes
 - 1) Urban slumps—Japan, Alaska,
 - 2) Sand boils in water-saturated sand
 - 5. Creep
 - a. Slow movement tilts 'stationary' objects
 - 1) bedrock, trees
 - 2) Fences, headstones,
 - b. Caused by frost heave
 - 6. Solifluction
 - a. Flowing of saturated soil above impermeable layer
 - b. Common in permafrost areas
 - 1) Active layer thaws in summer
 - 2) Flows over permanently frozen subsurface layer

- IV. Examples of devastating landslides
 - A. Shohomish County, Washington, 2006—protracted rainfall
 - B. US 50, Sierra Nevadas, 1997—rainfall, oversteepening
 - C. La Conchita, California, 2005-rainfall, oversteepening
 - D. Slide Mountain, Nevada, 1983—sudden snowmelt by rain
 - E. Lahars: volcanic debris flow
 - 1. Toutle River, Mt. St. Helens, Washington, 1980—snowmelt by volcanic eruption
 - 2. Nevado del Ruiz, Colombia, 1985
 - a. snowmelt by volcanic small eruption
 - b. 60 km/hr down channels,
 - c. gained material as it traveled
 - d. Armero 100 km from eruption
 - 3. Leyte Island, Philippines—protracted rainfall on debris, deforestation