ES 105 Geologic Time

- I. Principles of relative dating
 - a. Original horizontality
 - b. Lateral continuity
 - c. Superposition: NOTE only applies to sedimentary rocks, intrusions could come up from below!!
 - d. Inclusion
 - e. Crosscutting relationships
 - i. Intrusions
 - ii. Faults
 - iii. Unconformities
 - 1. •An unconformity is a break in the rock record
 - 2. •Types of unconformities
 - a. •Angular unconformity
 - i. tilted rocks are overlain by flat-lying rocks
 - ii. tilting event, erosion, deposition
 - b. •Nonconformity –look for inclusions!!
 - i. •Metamorphic or igneous rocks below
 - ii. •Younger sedimentary rocks above
 - c. •Disconformity hardest to recognize
 - i. strata on either side are parallel
 - ii. lack of sedimentation, or actually erosion
 - f. Faunal succession
- II. Fossils—evidence of past life
 - a. Types of fossilization
 - i. petrified-
 - ii. formed by replacement-microscopic details may be preserved
 - iii. mold—
 - 1. perfected when original material dissolves
 - 2. only shows shape and surface markings
 - iv. cast-space in mold filled with mineral material
 - v. carbonization-
 - vi. Impression when carbon is lost
 - vii. Preservation in amber-
 - viii. Trace evidence includes
 - 1. Tracks-footprints in soft sediment: Tuba City AZ
 - 2. Burrows—worms, mammals, some clams
 - 3. Coprolites—dung, stomach contents Gastroliths—gizzard or stomach stones
 - b. Preservation of evidence of past life actually not common
 - i. Rapid burial of the organism, or its trace
 - ii. Possession of hard parts—soft parts very uncommon fossils

- III. Fossils and correlation
 - a. Principle of faunal succession
 - i. fossils in beds of differing ages have distinctly different fossils, and the order of occurrence is definite and determinable
 - 1. William Smith: canals in England in the late 1700s
 - 2. Beds in widely separated areas could be predicted by noting the fossils in beds above compared to the same fossils in another area
 - ii. Fossils organisms succeed one another in a definite and determinable order, and therefore any time period can be recognized by this fossil content
 - 1. Age of trilobites, age of fishes, age of reptiles, age of mammals
 - 2. Recognition of fossils as time indicators became a very useful means of correlation of rock units
- IV. Geologic Time Scale
 - a. Subdivides 4.5 billion years (4500 million years)
 - b. Eons based on large changes in the fossil record
 - i. Hadean-hidden life
 - ii. Archean—primitive life: cyanobacteria is a plant-like singlecelled organism
 - iii. Proterozoic—early multi-cellular organisms without hard parts
 - iv. Phanerozoic—life that can be seen: beginning of hard parts
 - c. The first three Eons are collectively known as the preCambrian (Cambrian is the first Period of the first Era of the Phanerozoic Eon)

- d. Eras—divisions of the Phanerozoic
 - i. Paleozoic—Ancient Life: nearly all major groups of life (phyla) evolve in this era
 - 1. Arthropods—dominant early
 - 2. fishes—significant in the middle
 - 3. land plants
 - 4. insects
 - 5. amphibians-abundant later
 - 6. reptiles
 - 7. mammals—only minor presence
 - 8. Paleozoic ended with the greatest mass extinction in geologic record
 - a. 90+% of marine species die out, 70% of terrestrial vertebrates
 - b. Fungus dominant life form on land
 - ii. Mesozoic Era-Middle Life: reptiles rise to prominence
 - 1. Dinosaurs rule Earth
 - 2. Birds evolve from dinosaurs
 - 3. mammals evolve
 - 4. Flowering plants appear
 - 5. Ends with another great extinction—50% of all genera, including non-avian dinosaurs
 - iii. Cenozoic Era-Recent Life: rise of mammals
 - iv. Each Era is divided into Periods, distinguished by lesspronounced changes in life
 - 1. Periods divided into Epochs—each of which may be several million years long
 - 2. Periods are tens to hundreds of millions of years long
 - 3. Eras may be several hundred million years
 - 4. Eons hundreds to thousands of millions of years
- e. Actual numeric dates of the subdivisions of the geologic time scale determined by radiometric age dating of igneous rocks
 - i. Ash layers within sedimentary sequence
 - ii. Crosscutting relationships of intrusive rocks
 - iii. Thousands of instances give consistent results of age
 - iv. Methods such as these have allowed precise correlation of rock units in the Colorado Plateau area