- I. Introduction: two predominant types of lava
 - A. Lava derived from magma: less dissolved gas, because it is released when pressure drops upon extrusion
 - B. Basaltic magma at oceanic ridges or hotspots: Iceland, Kilauea
 - C. Granitic magma at convergent boundaries: Mt. St. Helens, Fujiyama
 - D. Terms:
 - 1. viscosity: resistance to flow—function of
 - a. temperature
 - b. dissolved gas content
 - 2. pyroclastic: particles shattered by volcanic eruption
- II. Volcanic eruptions
 - A. Factors that determine the violence of an eruption
 - 1.Composition of the magma
 - 2.Temperature of the magma
 - 3. Dissolved gases in the magma
 - B. Viscosity of magma viscos=sticky
 - 1. Viscosity is a measure of a material's resistance to flow
 - 2.Factors affecting viscosity: temp., silica content, dissolved gas
 - a. Temperature (hotter magmas are less viscous) e.g. honey: cool vs. hot
 - b. Composition (silica content) e.g. honey vs. syrup
 - 1) High silica = high viscosity (e.g. felsic lava)
 - a) 70% or more
 - b) silica tetrahedral link into mats
 - 2) Low silica = more fluid (e.g., mafic lava)
 - a) about 50%
 - b) hotter
 - c. Dissolved gases
 - 1) water vapor, carbon dioxide
 - 2) Gas content affects magma mobility
 - a) Low silica allows gases to escape easily
 - b) High silica traps gases within lava
 - 3) Gases expand near the surface and extrude lava: lava fountains
 - 4) Violence of an eruption is related to how easily gases escape from magma
 - a) Fluid basaltic lavas are generally quiescent -- pressure released
 - b) Highly viscous magmas produce explosive eruptions

 pressure builds

- III. Materials extruded during an eruption
 - A. Lava flows
 - 1.Basaltic lavas are more fluid
 - a. hot: thin sheets, 10-300 meters per hour
 - b. Types of basaltic lava
 - 1) Pahoehoe lava (resembles braids in ropes)
 - 2) Aa lava (rough, jagged blocks) cooler than pahoehoe lava: broken crusts
 - 2.rhyolite lava: cooler, more silica, flows very slowly
 - B. Pyroclastic materials: pulverized rock, molten lava
 - 1."Fire fragments"
 - 2. Types of pyroclastic material
 - a. Solids classified by size
 - 1) Ash and dust fine, glassy fragments
 - 2) Cinders "pea-sized"
 - 3) Lapilli "walnut" size
 - 4) Pumice from "frothy" lava—many cinders and lapilli are pumiceous
 - 5) Particles larger than lapilli: Blocks hardened lava
 - b. Bombs
 - 1) ejected as hot lava-
 - 2) cool on the fly into fusiform shapes
 - C. Gases
 - 1. One to 6 percent of magma by weight
 - 2.pressure reduction at surface allows to escape the magma
 - 3.composition
 - a. Mainly water vapor (70%) and carbon dioxide (15%)
 - b. About 5% each nitrogen, sulfur
 - c. Lesser amounts of chlorine, hydrogen, argon
- IV. Volcanoes:
 - A. Types of volcanoes
 - 1.Shield volcano
 - a. characteristics
 - 1) Broad, slightly domed
 - 2) Primarily made of basaltic (fluid) lava
 - 3) Generally large
 - 4) Generally produce a large volume of lava
 - b. mature shield volcanoes have steep middle slopes, with rift zone vents
 - c. common for system of lava tubes to drain lava to distant flanks
 - d. e.g. Mauna Loa in Hawaii

- 2.Composite cone (or stratovolcano)-
 - Most are adjacent to the Pacific Ocean (e.g., Fujiyama, Mt. Shasta) "Ring of Fire" around Pacific stretches from Aleutians to New Zealand
 - b. Large size, symmetric shape
 - c. Interbedded lavas and pyroclastics—andesitic magma1) fluid lavas early
 - 2) pyroclastics build steep upper slopes of coarse material, finer widespread
 - 3) lavas stabilize this area—short central vent flows
 - d. Most violent type of activity (e.g. Vesuvius)
 - e. Often produce nuée ardente
 - 1) Fiery pyroclastic flow of hot gases infused with ash
 - 2) Flows down sides of a volcano at speeds up to 200 km per hour
 - f. May produce a lahar, a type of volcanic mudflow
 - 1) stratovolcanoes are high—have snow and glaciers that melt
 - 2) unconsolidated pyroclastic debris can also fail due to heavy rainfall or other (than eruption) sudden snowmelt
 - 3) dangerous lahar areas
 - a) Mt. Rainier is very dangerous
 - i. high population density
 - ii. large amount of unconsolidated debris, and snow and ice
 - iii.many residential areas upon lahar deposits
 - b) Nevado del Ruiz--1985
 - i. Andes Mountains Columbia
 - ii. 100 km/hr down three major rivers

iii.25,000 killed in overnight lahar

- 3.Cinder cone
 - a. Built from ejected lava fragments
 - b. Steep slope angle-30-40 °
 - c. Rather small size-
 - d. short eruptive phase
 - e. Frequently occur in groups—many times as parasitic cones on larger volcano—Vesuvius has many

- B. General features—
 - 1.starts as a fissure that ejects magma
 - 2.intermittent eruptive phases over decades, centuries, millennia
 - 3.Vent (connected to the magma chamber via a pipe)
 - 4. Opening at summit
 - a. Crater (steep-walled depression at the summit) constructive feature
 - b. Caldera
 - 1) a summit depression greater than 1 km diameter
 - 2) collapse feature: evacuation of magma from central vent area
 - a) by eruption, or
 - b) by draining to flanks
- V. Other volcanic landforms
 - A. Calderas
 - 1. Steep walled depression at the summit
 - 2. Size exceeds one kilometer in diameter
 - 3. Types of calderas
 - a. Crater Lake-type—cone summit evacuated of magma by eruption
 - b. Hawaiian-type—cone summit evacuated of magma by draining
 - c. Yellowstone-type—widespread area of uplift, huge pyroclastic eruption, ring fracture collapse, welded tuff formation
 - B. Fissure eruptions and lava plateaus
 - 1. Fluid basaltic lava extruded from crustal fractures called fissures
 - 2. Produces flood basalts
 - 3. e.g., Columbia Plateau, Deccan Plateau
 - C. Volcanic pipes and necks
 - 1.Pipes are short conduits that connect a magma chamber to the surface
 - 2.Volcanic necks (e.g., Ship Rock, New Mexico) are resistant vents left standing after erosion has removed the volcanic cone