- I. Earthquakes
 - A. General features
 - 1. Vibration of Earth produced by the rapid release of energy
 - 2. Associated with movements along faults
 - a. Explained by the plate tectonics theory
 - b. Mechanism for earthquakes was first explained by H. Reid
 - B. Early 1900s
 - 1.Rocks "spring back"
 - a.Phenomena called elastic rebound
 - b. Vibrations (earthquakes) occur as rock elastically returns to its original shape
 - 2. Often preceded by foreshocks
 - 3. Often followed by aftershocks
 - 4. Fault creep
- II. Earthquake waves
 - A. Study of earthquake waves is called seismology
 - B. Earthquake recording instrument (seismograph)
 - 1.Records movement of Earth
 - 2.Record is called a seismogram
 - C. Types of earthquake waves
 - 1.Body waves travel through Earth—two types
 - a. Primary (P) waves
 - 1) Push-pull (compressional) motion
 - 2) Travel through
 - a) Solids
 - b) Liquids
 - c) Gases
 - b. Greatest velocity of all earthquake waves
 - 2.Secondary (S) waves
 - a. "Shake" motion, side-to-side
 - b. Travel only through solids
 - c. Slower velocity than P waves
 - 3. Surface waves
 - a. travel on Earth's surface
 - b. often extremely damaging
 - c. Complex motion
 - d. Slowest velocity of all waves

- III. Locating an earthquake
 - A. Focus the place within Earth where earthquake waves originate
 - B. Epicenter
 - 1.Point on the surface, directly above the focus
 - 2.Located using the difference in the arrival times between P and S wave recordings, which are related to distance
 - a. Three station recordings are needed to locate an epicenter
 - b. Circle equal to the epicenter distance is drawn around each station
 - c. Point where three circles intersect is the epicenter
 - C. Earthquake zones are closely correlated with plate boundaries
 - 1.e.g., Circum-Pacific belt
 - 2.e.g., Oceanic ridge system
- IV. Earthquake intensity and magnitude
 - A. Intensity
 - 1.A measure of the degree of earthquake shaking at a given locale based on the amount of damage
 - 2.Most often measured by the Modified Mercalli Intensity Scale
 - a. Described by how it is felt
 - b. Dependent on
 - 1) amount of energy released,
 - 2) rock type, and
 - 3) distance to earthquake
 - c. modified Mercalli scale
 - 1) not felt except by a very few un favorable circumstances
 - 2) felt only by a few persons at rest, especially on upper floors of buildings
 - 3) felt quite noticeably indoors, especially on upper floors, but often not recognized as earthquake
 - 4) felt indoors by many, outdoors by few. Sensation of truck striking building
 - 5) felt by nearly everyone, many awakened. Disturbances of trees, plies, other tall objects sometimes noticed
 - 6) felt by all; many frightened and run outdoors. Some heavy furniture moved. Few instances of fallen plaster or damaged chimneys. Damage slight
 - 7) everyone runs outdoors. Damage negligible in buildings of good design and construction; slight-to-moderate in well-built ordinary structures; considerable in poorly built or badly designed structures.
 - Damage slight only in specially designed structures; considerable in ordinary substantial buildings with partial collapse; great in poorly built structures. (Chimneys fall, etc.)

- 9) Damage considerable in specially designed structures. Buildings shifted off foundations. Ground cracked conspicuously.
- 10) Damage total. Waves seen on ground surfaces. Objects thrown upward into the air.
- B. Magnitude
 - 1. Concept introduced by Charles Richter in 1935
 - 2.Often measured using the Richter scale
 - a. Based on the amplitude of the largest seismic wave
 - b. Each unit of Richter magnitude equates to roughly a 32-fold energy increase
 - 1) Can be discerned by seismometers
 - 2) Generally not felt
 - 3) Felt by some
 - 4) Felt by most
 - 5) Damaging
 - 6) Destructive in populous areas
 - 7) Major earthquakes, serious damage
 - 8) Great, rare, destroy communities near epicenter
 - c. Does not estimate adequately the size of very large earthquakes
 - 3.Moment magnitude scale
 - a. Measures very large earthquakes
 - b. Derived from the amount of displacement that occurs along a fault zone, area of the rupture surface, and the strength of the rock that was ruptured.
 - c. Small earthquakes have roughly same moment magnitude and Richter magnitude