Plate Tectonic Theory—from birth, to hypothesis, to paradigm

- I. Continental Drift
 - a. Alfred Wegener—German meteorologist
 - i. Suspected continents were once joined across the Atlantic Ocean—hypothesis suggested by obvious fit of coastlines
 - ii. Supported by restricted range of coastal swamp reptile Mesosaurus—
 - 1. appearing on both South America and Southern Africa, in Permian age rocks, but not elsewhere in the same age rocks
 - 2. if it could swim the Atlantic Ocean to get to the other continent, why was it not more widespread?
 - iii. Set out to find additional evidence to support hypothesis
 - 1. 2.2 billion year old granite in Brazil and Africa
 - 2. similar aged mountain belts from North America to Europe
 - 3. Glacial deposits in tropical areas
 - 4. Equatorial swamp deposits in temperate areas
 - iv. Rejoined land masses into Pangaea in the early Jurassic Period
 - b. Challenged to find a mechanism for continents to plow through the ocean basins
 - i. Suggested tidal forces, but this was easily countered by physicists
 - ii. But just because there were holes, and some misconceptions (plowing through ocean basin) doesn't make the supporting evidence wrong.
- II. Plate Tectonics
 - a. Additional data about the nature of our world came to be known throughout the middle of the twentieth century
 - i. Sonar mapped the sea floor
 - 1. showed oceanic ridge system, crossed by fracture zones, and presence of deep arcuate trenches
 - ii. Earthquake studies showed distinct patterns of locations and depths of earthquakes
 - iii. Magnetic data from continents and the sea floor
 - 1. sea floor showed parallel bands of greater and lesser magnetism symmetric across the mid-ocean ridge
 - continents showed location of North Pole relative to the land area had changed through time: Polar Wandering. Each continent had a different path of polar wandering unique to itself.

- b. Plate Tectonics Paradigm is a 'super theory': so well supported and able to explain large amounts of apparently unrelated data
 - i. Earth's surface is composed of rigid lithospheric plates from a few km to a few hundred km thick
 - 1. These move as coherent units with respect to one another
 - 2. Each plate has little to no internal deformation
 - 3. i.e.: New York moves with respect to London, but the distance between New York and Denver remains essentially the same.
 - ii. There are seven major lithospheric plates, most of which contain both continental crust and oceanic crust, and numerous smaller plates
 - 1. Lithospheric plates
 - a. Contain both crust and uppermost rigid mantle
 - b. Slide over the asthenosphere, which is composed of rocks that are nearly melted
 - 2. crust types
 - a. continental crust is granitic, less dense, more silicic (about 80%)
 - b. oceanic crust is basaltic, more dense, about ½ silica
 - 3. seven major plates
 - a. Pacific
 - b. North American
 - c. South American
 - d. Eurasian
 - e. Australian-Indian
 - f. Antarctic
 - 4. intermediate plates
 - a. Juan de Fuca
 - b. Cocos
 - c. Nazca
 - d. Caribbean
 - e. Scotia
 - f. Philippine
 - g. Arabian
 - 5. over a dozen small plates have been identified of local significance
 - 6. Plate boundaries are defined by earthquake locations
 - iii. plates interact on their edges
 - 1. Divergent boundaries
 - 2. convergent boundaries
 - 3. transform boundaries