Solar System

I. Origin of Solar System
A. Nebular cloud of swirling gases and dust
B. Composed mainly of hydrogen
C. Gravitational collapse heated to fusion at center

1. material with high melting temperatures
a. condensed in inner warm regions
b. silica, metal
c. accreted into inner rocky planets
2. material with low melting temperatures
a. stayed melted in inner regions, condensed in outer regions
b. methane, water, ammonia, carbon dioxide
1) lots of this stuff
2) became primordial outer large planets
3) large size has large gravitational field to hold light atoms
a) hydrogen and helium
b) gas giants
II. Overview of the solar system-Solar system includes
A. Sun
1. 99.85% of system mass
2. Nuclear fusion of hydrogen into helium
B. Objects in orbit around Sun
3. Inner terrestrial planets
a. Mercury, Venus, Earth, Mars
b. Small, stony, Little atmosphere
4. Outer gas planets
a. Jupiter, Saturn, Uranus, Neptune
b. Large, Gases (hydrogen and helium) and ices (methane, ammonia)
5. Dwarf planets, asteroids, comets, meteoroids
a. Various compositions
1) Terrestrial material,
2) ices
b. various locations and orbits
3) asteroid belt in planetary plane of orbit
c. highly eccentric and inclined orbits compared to eight planets
III. Composition of Solar System objects
A. Gases-low melting temperature: about absolute zero
1. hydrogen-most abundant gas in solar system
2. helium
B. Rocky and metallic material-high melting temperature: $+700^{\circ} \mathrm{C}$
3. silicate minerals-like igneous rocks
4. pure metals and alloys-mostly iron and nickel
C. Ices (of things besides water)—intermediate melting temperature 1. Ammonia $\left(\mathrm{NH}_{3}\right)$
5. Methane $\left(\mathrm{CH}_{4}\right)$
6. Carbon dioxide $\left(\mathrm{CO}_{2}\right)$
7. Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$
D. Nebular cloud hypothesis of Solar System formation explains why inner planets and outer planets are different: temperatures and melting temperatures
IV. Planetary information
A. Mercury
1.Innermost planet
2.smallest planet 4880 km diameter
3.orbit
a. inclined 7° to Sun's equator
b. highly eccentric 45 million km to 70 million km
c. Revolves quickly Orbital period 88 Earth days
d. Rotates slowly 3 rotations in 2 orbits
1) 179 Earth days for one Mercury mean solar day
2) Table 21.1 says 59 days-that's a sidereal day WHAT'S THAT?
4.No atmosphere but trace of hydrogen and helium
5.Surface-
a. cratered highlands and vast, smooth terrains
b. scarps suggest crustal shortening
c. Extreme temperatures
3) Cold nights ($-173^{\circ} \mathrm{C},-280^{\circ} \mathrm{F}$)
4) Hot days $\left(427^{\circ} \mathrm{C}, 800^{\circ} \mathrm{F}\right)$
6. Very dense-large iron core
7. Mariner 10 photo mosaic 1974 went to Venus first
B. Venus
1.motion
a. Orbit 225 days (text citation is in error)
b. Rotation is 243 Earth days, and retrograde (turns backwards)
c. Axial tilt $2^{\circ} \quad\left(178^{\circ}\right.$ retrograde)
2.Similar to Earth
a. Size 12000 km (c.f. 12756 km)
b. Density and composition
1) 3000 km diameter iron core,
2) partly molten rocky mantle
c. Location in the solar system
d. Has atmosphere-unlike Mars and Mercury
3.Shrouded in thick clouds
a. Impenetrable by visible light
b. Atmosphere is 97% carbon dioxide, $3 \% \mathrm{~N}_{2}$, trace $\mathrm{H}_{2} \mathrm{O}$
c. Surface atmospheric pressure is 90 times that of Earth's

4.Surface

a. Mapped by radar by Magellan Project
b. Features

1) 80% of surface is subdued plains covered by volcanic flows
2) Low density of impact craters
3) Tectonic deformation active during the recent geologic past
4) Thousands of volcanic structures
C. Mars
1.Called the "Red Planet" - "telecscopic surface" close enough to view, and clear enough to see
2.Atmosphere
a. 1\% as dense as Earth's
b. Primarily carbon dioxide $95 \%, 3 \% \mathrm{~N}_{2}, 1.6 \% \mathrm{Ar}$, trace $\mathrm{H}_{2} \mathrm{O}$
c. Cold polar temperatures $\left(-193^{\circ} \mathrm{F}\right)$
d. Polar caps of water ice, covered by a thin layer of frozen carbon dioxide
e. Extensive dust storms with winds up to 270 kilometers (170 miles) per hour Mariner landed in a dust storm
3.Surface
a. Less-abundant impact craters
b. Numerous large volcanoes - largest is Mons Olympus, 75 km above mean surface (c. f. Everest, < 9 km above msl)
c. Tectonically dead
d. Several canyons
5) Some larger than Earth's Grand Canyon
6) Valles Marineras - the largest canyon
a) Almost 5000 km long
b) Formed from huge faults
e. "Stream drainage" patterns
7) Found in some valleys
8) No bodies of surface water on the planet
9) Possible origins
a) Past rainfall
b) Surface material collapses as the subsurface ice melts
4. Moons
a. Two moons-Phobos 11 km , Deimos 6 km : close to surface
b. Captured asteroids, probably
D. Jupiter
1.Largest planet, Very massive
a. 2.5 more massive than combined mass of all other planets, satellites, and asteroids
b. If it had been ten times larger, it would have been a small star
c. $1 / 800$ mass of Sun
2.Movement
a. Rapid rotation-- Slightly less than 10 hours
b. Orbital period-4332 Earthdays
3.Banded appearance
a. Multicolored Bands are aligned parallel to J upiter's equator
b. Generated by wind systems
1) Winds
a) to $200 \mathrm{mi} . / \mathrm{h}$ at top of atmosphere (cloud tops)
b) measured to 400 mph inside
2) Storms
a) Great Red Spot
i. In planet's southern hemisphere
ii. Counterclockwise rotating cyclonic storm
iii. Persistent over centuries-other storms survive a few days
b) move 7.5 degrees/day-48 days to circle planet
4.Structure-gas planet
a. atmosphere $90 \% \mathrm{H}_{2}, 10 \% \mathrm{He}$
3) density increases into depth of atmosphere until liquid mixture
4) 'Surface’ thought to be a gigantic ocean of liquid hydrogen
5) Halfway into the interior, pressure causes liquid hydrogen to turn into liquid metallic hydrogen
b. Slightly bulged equatorial region-due to rapid rotation and lack of solid material
c. Rocky and metallic material probably exists in a central core 5.Moons
a. At least 63 moons- 47 are less than 10 km diameter
b. Four largest moons
6) Discovered by Galileo in 1610, Called Galilean satellites
a) He wanted to name them Medicean stars, after his patron Medici
b) But named by Marius in 1610 for figures in Zeus's life
7) Each has its own character-very distinct from one another a) 10
i. Innermost Galilean moon-slightly larger than Moon
ii. Volcanically active
a. heat source could be from tidal energy
b. internal stresses from J upiter, and other Galilean moons
iii. Sulfurous/sodium-rich surface, iron (+/- sulfur) core, molten silica mantle
iv. Sulfur dioxide atmosphere
v. Magnetic field of its own imbedded within Jupiter's magnetic field
b) Europa
i. Smallest Galilean moon
ii. Icy surface-
a. is there liquid water beneath it?
b. composition mostly rock (silicate minerals)
iii. Many linear surface features-what are these surface streaks?
iv. weak magnetic field, tenuous atmosphere of oxygen
c) Ganymede
i. Largest Jovian satellite-larger than Mercury
ii. Diverse terrains
a. Surface has numerous parallel grooves
b. areas of craters
iii. Magnetic field of its own imbedded within Jupiter's magnetic field
iv. Structure-inner iron +/- sulfur core, rocky mantle, ice crust
d) Callisto
i. Outermost Galilean moon-
ii. slightly smaller than Mercury, $1 / 3$ Mercury's mass
iii. Densely cratered-most densely in solar system
iv. composed 40% ice, 60% rock/iron; CO_{2} atmosphere
c. Ring system
8) dark, composed of dust (not ice, like Saturn's)
9) continually resupplied by micrometeor impacts with Metis, Adrastea, Amalthea, Thebe (four inner moons of J upiter)
6. Interplanetary reach of Jupiter
a. huge magnetic field reaches past Saturn-contains charged particles
b. intense radiation belt between ring and uppermost cloudtops

E. Saturn

1. Smaller, but similar to Jupiter in its
a. Atmosphere
b. Composition
c. Internal structure
2. Rings
a. Most prominent feature
b. Discovered by Galileo in 1610-but he didn't properly conceptualize them
c. Geometry correctly inferred by Huygens in 1659
d. Complex Composed of small particles (moonlets) that orbit it
1) Most rings fall into two categories based on particle density
a) Main rings contain particles from a few centimeters to several meters in diameter
b) Faintest rings are composed of very fine (smoke-size) particles
2) Thought to be debris ejected from moons
3) Origin is still being debated
3. Other features
a. Dynamic atmosphere-10\% polar flattening, equatorial bulge
b. Large cyclonic storms similar to Jupiter's Great Red Spot
c. Thirty named moons
1) Titan - the largest Saturnian moon-larger than Mercury
a) Second largest moon in solar system (Ganymede)
b) substantial atmosphere- $\mathrm{N}_{2}, 6 \%$ argon, few $\% \mathrm{CH}_{4}$
c) surface very new-
i. tectonic, windblown, liquid methane, volcanic ii. There is clear evidence for "precipitation, erosion, mechanical abrasion and other fluvial activity".
d) composed of water ice and rocky silicates
2) Enceladus: shiniest object in solar system-new ice!
3) other moons:
a) some are captured asteroids,
b) Phoebe has retrograde motion
F. Uranus (ooRAINus)-discovered 1781, barely visible to naked eye
1. rock, ices, atmosphere $83 \% \mathrm{H}_{2}, 15 \% \mathrm{He}, 2 \%$ methane
2. Rotates "on its side"
3. Rings-similar composition to Jupiter's rings
4. Large moons $\mathrm{w} /$ varied terrains-5 are 10-100x larger than others
a. $40-50 \%$ water ice, remainder is rock
b. Titania, Oberon, Umbriel, , Ariel, Miranda
5. Uranus and Neptune are nearly twins--bluish in appearance
G. Neptune
6. Dynamic atmosphere--composed of methane
a. One of the windiest places in the solar system
b. Great Dark Spot disappeared, new one in N hemisphere
c. White cirrus-like clouds above the main cloud deck
7. Eight named satellites, five others recently discovered
a. Triton - largest Neptune moon-nearly as big as Moon
1) Orbit is opposite other planet's travel (retrograde rotation)
2) Lowest surface temperature in the solar system ($-391^{\circ} \mathrm{F}$)
3) Atmosphere of mostly nitrogen with a little methane
4) Volcanic-like activity-ice volcanoes
5) Water ice, layers of solid nitrogen and methane
b. We know little about the other satellites of Neptune
3. Has rings like Uranus, curiously oriented magnetic field generated by ?:water within planet
4. Galileo saw Neptune in 1613, but thought it was a star
