- 1. Age of Reason
 - a. Nicolaus Copernicus 1473-1543
 - i. Commenteriolus manuscript circulated from 1512
 - 1. unpublished
 - 2. Heliocentric hypothesis
 - ii. 'On the Revolutions of the Planets' published year of his death
 - 1. incorporated some epicycles to account for lack of perfect agreement with perfectly circular orbits around Sun (did not consider ellipse shape of orbits)
 - publisher's preface declared it 'hypothesis' to predict location of planets
 - 3. not much notice taken by Church at that time
 - 4. Galileo began "Copernican Crusade" in early 1600's that lead to it being banned from 1632-1835 by Catholic Church
 - b. Tycho Brahe 1546-1601 Danish astronomer
 - i. Observations very exact thorough
 - 1. 1572 Supernova in Cassiopeia
 - 2. Comet in 1577 convinced him Aristotle's hypothesis was wrong celestial sphere not solid and unchanging
 - ii. "great quadrant" and corrections for refraction of atmosphere allowed him to plot very accurately
 - 1. calculated Earth's axial tilt to 1/100 of degree
 - 2. tropical year length to one second accuracy
 - iii. rejected Ptolemaic system, and Copernican system
 - 1. Tychonian model
 - a. Sun orbits Earth
 - b. All other planets orbit Sun
 - c. Earth is fixed-there is no stellar parallax
 - iv. Took on assistant Johannes Kepler in 1600
 - c. Johannes Kepler 1571-1630
 - i. Used Tycho's observations to formulate laws of planetary motion
 - 1. Planets move in elliptical orbits around Sun
 - 2. Planets sweep equal area in equal time period
 - distances of planets to Sun are proportional to period of orbit around Sun (p²=d³)
 - ii. fanatic about finding 'causes' for natural observations—hindered him at times
 - iii. Vigorous supporter of Galileo's observations of the moons of Jupiter

- d. Galileo Galilei 1564-1642
 - i. Heard about lenses being used to magnify objects
 - 1. created his own telescopes to 30 power—not the inventor!
 - 2. looked at planets and Sun
 - ii. Planetary observations
 - 1. discovered planets are discs, not points
 - 2. found Jupiter has moons
 - a. implication that Earth not the only center of orbit
 - b. disputes the argument that if Earth orbits Sun, then Moon would be left behind
 - 3. Venus has phases, and this supports heliocentric hypothesis also. He noticed that when Venus is full, it appears smallest, because it is farther away than when it is crescent
 - 4. Moon surface is cratered and mountainous
 - 5. Sun has sunspots, that move around on Sun's surface
 - iii. *Dialogue of the Great World Systems* published in 1630, banned by Church, he was house-arrested for the rest of his life—exonerated in 1992
- e. Isaac Newton 1642-1727
 - i. Formulated and tested the Law of Universal Gravitation—every body in the universe attracts every other body with a force proportional to their masses, and inversely proportional to the distance between them
 - ii. Accounted for why Kepler's laws worked
 - iii. Also explains perturbations of orbits due to other bodies
- f. Foucault's pendulum proved that Earth rotates on axis
 - i. Pendulum continues to swing in same plane unless acted upon by outside influence
 - ii. Pendulum set into motion changes apparent position over full day period
 - iii. It doesn't really swing in a changing plane, Earth is rotating under it.

2. Solar System

- a. Sun is the center
- b. Planets have elliptical orbits around Sun
- c. Orbits function of inertia and gravity
- 3. Constellations
 - a. Apparent groups of stars, actually unrelated
 - b. 88 recognized divide sky into units to identify areas—such as Orion
 - c. Many bright stars have proper names—Sirius, Arcturus brightest in northern sky
- 4. Position in sky also divided by geometry: celestial poles and equator extended from Earth's poles and equator
 - a. declination-from the equator, in degrees N and S
 - b. right ascension—rising from where Sun crosses celestial equator on the March equinox, in hours of Earth turning

- 5. Motion of Earth
 - a. Rotation—turns on axis one complete rotation about 24 hours
 - i. Turn on axis pointing at Polaris—Big Dipper 'rotates' around Polaris daily
 - ii. Mean solar day—for Sun to get to High Noon again
 - iii. Sidereal day—for star to get to same sky position: about four minutes less than mean solar day
 - iv. Astronomical observatories use sidereal day
 - b. Revolution—orbit around Sun
 - i. Average of 150 million km from Sun
 - 1. Perihelion—147 million km; Occurs about January 3
 - 2. Aphelion—152 million km; Occurs about July 4
 - 3. This is a result of Earth's elliptical orbit around Sun, which varies from closest to a circle to about 5% from a circle in a 100,000 year cycle
 - ii. Earth's axis of rotation is inclined to our orbital plane around Sun
 - 1. Results in the plane of the ecliptic at 23.5° angle to celestial equator
 - 2. Tilt of Earth's axis results in seasons we have
 - a. rotation with north pole facing Sun results in greater heating of northern hemisphere
 - b. rotation with south pole facing Sun results in less heating of northern hemisphere
 - c. seasons are NOT the result of Earth being closer to Sun (notice distance vs. northern hemisphere seasons)
 - 3. Sun appears to cross celestial equator on the Equinox: ~22 March and September
 - 4. Sun furthest from celestial equator (23.5°) on the Solstice: ~ 21 June and December
 - iii. Sun appears to be displaced against star backdrop
 - 1. about 1 degree/day
 - 2. path through stars called ECLIPTIC
 - 3. planets and moon have orbits in about same plane of Earth around Sun, so they travel near the ecliptic also
 - c. Precession is the wobble of Earth's axial tilt
 - i. Slowly changing position in the sky—full circle 28,000 years
 - 1. as axis changes position, it will bring seasonal change to differing coincidence with perihelion and aphelion
 - 2. in 14,000 years, June solstice will occur nearer to perihelion, warming northern hemisphere more
 - ii. Angle varies a slight amount also, between 21.5° and 24.5°—in a 41,000 year cycle.
 - iii. These Earth-Sun variations can affect overall Earth temperature: see <u>http://www.homepage.montana.edu/~geol445/hyperglac/time1/milankov.htm</u> for a detailed explanation and competing hypotheses of Earth's reaction to these variations

- 6. Motions of the Earth-Moon system
 - a. Moon has an elliptical orbit around Earth
 - i. 6% variation in distance throughout its cycle-it is on average 384,401 km
 - ii. Orbit accounts for phases of Moon, and eclipses of Moon and Sun
 - b. Phases of Moon
 - i. New→crescent→1/4 Moon→Full→3/4 Moon→crescent→New
 - ii. Waxing for two weeks: greater amount illuminated each night
 - iii. Waning for two weeks: lesser amount illuminated each night
 - iv. Sunlight is reflected off of Moon's surface
 - 1. when Moon is opposite Sun, it is a full disc
 - 2. when Moon is between Earth and Sun, it is a crescent, or not illuminated (New)
 - 3. a Full Moon rises at sunset, and sets at sunrise, as a result of it orbital position to be shown as Full
 - c. Lunar Motions
 - i. It takes Moon 29 ½ days to come to the same position relative to the Sun-'Synodic Month': apparent period lengthened due to Earth's orbit of Sun
 - ii. However since Earth-Moon system has progressed 1/12 of the way around the Sun orbit, the period for Moon to go exactly all the way around Earth needs to be compared to a distant star.
 - 1. it takes 27 $^{1}/_{3}$ days to go around Earth
 - 2. 'sidereal month'
 - 3. Moon also rotates on its axis, once every 27 $^{1}/_{3}$ days
 - a. The same side of Moon always faces Earth
 - b. Days and nights last two weeks on Moon
 - c. Lack of moisture and atmosphere allow temperatures to vary widely during these extraordinarily long days and nights
 - i. 127° C in day
 - ii. -173° in night
 - d. Eclipses—shadow effects of Moon and Earth
 - i. Moon's orbit is inclined about 5° to Earth's orbit around Sun
 - ii. Lunar eclipse occurs when Earth's shadow falls on Moon
 - 1. Earth is between Sun and Moon
 - 2. occurs only when Moon is full
 - 3. Moon is still visible because of some bending of light around Earth
 - iii. Solar eclipse occurs when Moon's shadow falls upon Earth
 - 1. Moon is between Earth and Sun
 - 2. only occurs when Moon is new
 - 3. Total eclipse is within the 275 km wide umbra
 - a. Lasts at most for 7 minutes in any area
 - b. Total eclipses are rare: next one in August 2017
 - 4. partial eclipse over larger area in penumbra
 - iv. Earth usually 'misses' Moon's shadow, so on average, there are four eclipses per year: two lunar, and two solar

- 7. Moon
 - a. Earth's only natural satellite
 - i. Large in reference to Earth, compared to other natural satellites of other planets
 - 1. about ¼ of Earth's diameter
 - 2. 3475 km
 - ii. Density similar to Earth's mantle material, small iron core
 - b. Surface—not protected by atmosphere
 - i. Craters
 - 1. impact of meteoroids
 - a. ejecta
 - b. rays
 - 2. more common in early part of Moon's history
 - ii. lunar highlands-most of Moon's surface, all of back side
 - 1. original surface: intensely cratered
 - 2. low-iron content compared to maria
 - iii. maria—plural of mare
 - 1. high iron content lowlands
 - 2. younger than lunar highlands
 - 3. created by large asteroid impact
 - a. caused sub-crustal melting and basalt flows
 - b. similar to Columbia Plateau basalts
 - iv. lunar regolith
 - 1. soil-like surface produced by numerous meteoroid impacts
 - 2. fine dust, glass beads, breccia, igneous rock
- 8. Lunar history
 - a. Earth impacted by large asteroid about 4.5 billion years ago
 - i. Caused part of Earth to be ejected into orbit around Earth
 - ii. Dust accreted into lunar body
 - 1. Gravitational contraction caused melting and formation of crust, mantle and core.
 - 2. original surface was the present lunar highlands
 - b. Maria basins formed 3.8 to 3.2 billion years ago by asteroid impact
 - c. Continued bombardment created craters, including the 'rayed craters' such as the Copernican crater