- I. Stellar evolution
 - a. Knowledge of age of stars
 - i. Know distance to stars by parallax calculations
 - ii. Know speed of light
 - 1. calculate how long it takes to get light here
 - 2. what we see happened a long time ago—when star was young
 - iii. Distant stars are different uniformly than closer ones!!
 - iv. Implication that older stars are different than young ones
 - b. Stars exist due to gravity
 - i. Gravity compresses H₂ into He—nuclear fusion releases energy
 - ii. Gases of stars held out of complete collapse by its gravity by thermonuclear energy released by the fusion of H₂ into He
 - c. Stages
 - i. Star birth from contracting cloud of 92% H₂, 7% He
 - ii. Protostar gravity heats mass to 10 million K, begins fusion
 - iii. Main sequence stars— stable because gravity balanced with outward pressure of release of thermonuclear energy of fusion
 - 1. massive ones fuse H_2 ('burn' fuel) more quickly than smaller stars
 - 2. depletion of fuel after ~90% of lifespan
 - a. upon depletion of H₂ rapid evolution
 - b. dies shortly unless:
 - 3. may extend lifespan by becoming 'red giant'
 - iv. Red Giant Stage
 - 1. hydrogen becomes depleted in core, 'burning' continues in outward migrating area
 - a. no fusion in core has no support
 - b. gravity begins to contract He core
 - 2. core collapses,
 - a. gravitational contraction increases temperature
 - i. heat invigorates hydrogen fusion in outer star shell
 - ii. expands outer envelope of star to giant
 - iii. outer surface is cooler, because of large size compared to total energy
 - iv. can becomes oscillating in size from porpoise of expansion and contraction
 - b. increased gravitational contraction in core raises temp. to point where He fuses to C
 - c. can fuse up to element 26: Fe, in hotter stars

- v. Burnout and death-exhaustion of nuclear fuel
 - 1. low mass stars collapse to white dwarf,
 - a. never hot enough for helium fusion to carbon-do not become red giants
 - b. emission of heat energy of gravitational collapse—to 25,000 K
 - c. no nuclear fusion—glow because of heat
 - d. eventual cooling goes to black dwarf
 - e. extremely dense—spoonful=several tons
 - 2. medium stars like Sun
 - a. may go through giant phase before becoming white dwarf
 - i. giant phase accelerates burning of H₂
 - ii. white dwarf is as dense of matter as physics will allow
 - b. cast off their outer atmosphere into a nebula during red giant phase
 - c. Helix Nebula in Aquarius nearest to us
 - i. 450 light years away
 - ii. ring shape is the greater material we see through in sides of sphere
 - d. eventual collapse of core into white dwarf
 - 3. large stars explode in a supernova
 - a. consumes fuel rapidly
 - b. collapses in without fusion pressure to hold it out
 - c. implosion shock wave causes explosion as a supernova, 1 million times brighter than before
 - i. blows outer shell into space
 - ii. interior collapses into dense material: denser than matter
 - iii. becomes neutron star or black hole
 - iv. Crab Nebula
 - 1. from supernova event observed in 1054 AD
 - 2. 6300 light years away means...?
 - v. Veil Nebula in Cygnus-
 - 1. supernova 5000 to 10,000 years ago
 - 2. 1400 l.y. away
 - vi. Eagle Nebula in Serpens
 - 1. example of supernova
 - 2. creating stars in present nebula
 - stars have heavier elements from supernova event than original generation of star formation

- d. neutron star
 - i. electrons collapsed to combine with protons → neutron
 - ii. pea-size=100 million tons
 - iii. strong magnetic field, rotation, radio emissions=pulsar
 - iv. Crab nebula supernova observed in 1054 AD has a pulsar at center
- e. black hole
 - i. so much gravity that photons cannot escape
 - ii. matter being engulfed emit x-rays

Gravity of an object depends upon its mass. When stars collapse, those more massive have more gravity, to pull its material a greater amount inward. The more massive the star, upon its collapse, the smaller the resulting body becomes, with greater gravity than collapsed stars with lower-mass.

- II. Stellar remnants
 - a. White dwarfs—extremely small with high density
 - i. Degenerate matter with electrons displaced inward toward nucleus of atom
 - ii. Very hot 25,000 K,
 - 1. without energy source
 - 2. remnant heat from gravitational collapse
 - iii. will cool over time to become 'black dwarf'—none yet in universe, due to length of time and cooling time
 - b. neutron stars—smaller in radius, more massive than white dwarfs
 - i. electrons combine with protons to become neutrons
 - ii. Earth-sized body collapse to density of neutron star—size of a football field
 - iii. Supernova event collapses star to neutron body that
 - 1. has a very strong magnetic field,
 - 2. has high rotation rate,
 - 3. generates radio waves from magnetic poles
 - iv. result is 'pulsar'
 - 1. there is a pulsar in Crab Nebula
 - 2. remnant of star that exploded in supernova
 - c. black holes
 - i. extreme collapse into ultra-dense material
 - ii. gravity of extremely massive object so great that even light does not have velocity to escape its grasp
 - iii. extremely hot
 - iv. generate x-ray frequency of electromagnetic radiation when matter is engulfed
 - v. can find them by looking at binary star systems
 - 1. x-ray source in Cygnus found by satellites
 - 2. orbiting supergiant star around x-ray source

- III. Galaxies
 - a. Milky Way Galaxy
 - i. 100 billion stars, interstellar matter,
 - ii. spiral arm structure
 - 1. extremely flat
 - 2. bulge in center
 - iii. 100,000 light years across
 - b. Types of galaxies
 - i. Spiral like the Milky Way and Andromeda-
 - 1. most are large
 - 2. mixed ages of stars
 - a. older in central part
 - b. youngest in arms
 - ii. Elliptical galaxies often much smaller—
 - 1. most galaxies are of this type (60%)
 - 2. stars in these are old stars
 - iii. Irregular galaxies like the Magellanic Clouds—stars are forming in the Magellanic Clouds—mostly young stars in these
 - c. Galaxies occur in clusters, and clusters occur in superclusters
- IV. Red Shifts
 - a. Most galaxies have 'red shift' of spectrum
 - b. Dimmest ones have greatest red shift
 - c. Implications
 - i. they are going away from us, and
 - ii. farther ones going away faster
 - d. The 'raisin bread dough' analogy
 - i. Every raisin is moving away from every other raisin
 - ii. Those further apart are moving away faster than those close together
- V. Big Bang
 - a. 14 billion years ago there was a cataclysmic explosion
 - b. All matter and space were created at this moment
 - c. Cooling and condensation created stars
 - d. Will there be an end to the expansion??
 - i. Either we will keep moving away from other galaxies or
 - ii. At some ultimate distance, the galaxies will begin to be drawn in by gravity to the 'Big Crunch'
 - e. "Absence of evidence is not evidence of absence"