- I. Sun
 - A. One of 200 billion stars that make up the Milky Way galaxy
 - B. Only star close enough to allow the surface features to be studied
 - C. An average star
 - D. Structure can be divided into four parts
 - 1. Photosphere
 - a. "Sphere of light"
 - b. Sun's "surface" actually a layer of incandescent gas less than 500 kilometers thick
 - c. Grainy texture made up of many small, bright markings, called granules,
 - 1) produced by convection
 - 2) Sunspots are associated
 - a) On the solar surface
 - b) Dark center, the umbra, surrounded by a lighter region, the penumbra
 - c) Dark color is due to a cooler temperature (1500 K less than the solar surface)
 - d) Follow an 11-year cycle
 - e) Large spots are strongly magnetized
 - f) Pairs have opposite magnetic poles
 - d. Most of the elements found on Earth also occur on the Sun
 - e. Temperature averages approximately 6000 K (10,000°F)
 - 2. Chromosphere
 - a. Just above photosphere
 - b. Lowermost atmosphere
 - Relatively thin, hot layer of incandescent gases a few 1000 km thick
 - d. Top contains numerous spicules narrow jets of rising material
 - 3. Corona
 - a. Outermost portion of the solar atmosphere
 - b. Very tenuous
 - 1) Low density
 - 2) Low emission of radiation
 - c. Ionized gases escape from the outer fringe and produce the solar wind
 - 1) Blows comet tails
 - 2) Creates the auroras in our atmosphere
 - d. Temperature at the top exceeds 1 million K

- E. Solar features
 - 1. Sunspots
 - 2. Prominences
 - a. Huge arching cloudlike structures that extend into the corona
 - b. Condensations of material in the corona
 - 3. Solar Flares
 - a. Explosive events that normally last an hour or so
 - b. Sudden brightening above a sunspot cluster
 - c. Release enormous quantities of energy
 - d. Eject particles that reach Earth in about one day and interact with the atmosphere to cause the auroras (the Northern Lights and Southern Lights)
- II. Solar interior
 - A. Cannot be observed directly
 - B. Nuclear fusion occurs here
 - 1. Source of the Sun's energy
 - 2. Occurs in the deep interior
 - 3. Nuclear fusion reaction that produces the Sun's energy is called the proton-proton reaction
 - a. Four hydrogen nuclei are converted into a helium nuclei
 - 1) Mass of 4 hydrogen = $4 \times 1.008 = 4.032$
 - 2) Mass of a helium = 4.003
 - 3) Difference of 0.029 atomic units
 - b. Matter is converted to energy—released as photons
 - c. 600 million tons of hydrogen is consumed each second
 - 4. Sun has enough fuel to last another five billion years
- III. Sun history and future
 - A. Nuclear fusion initiated by gravitational contraction and heating
 - B. 5 billion years later, about 1/2 of hydrogen used up-now
 - C. Core hydrogen exhausted in 1.5 billion years
 - 1. shell hydrogen begins to be consumed
 - 2. causes Sun to swell to more than 3 times, and become brighter—Red Giant
 - 3. Earth will be 100 degrees hotter than now!!

D. Another 1/4 billion years, Sun swells 100 times its present size

- 1. Earth molten
- 2. Sun's core temperature high enough to fuse helium into carbon
- 3. blast of this throws ~ 1/3 of Sun's mass into space—Nova
- 4. gravitational collapse and rebound creates a pulsing star
- E. eventual collapse into white dwarf with gas bubble around it

- IV. Stars
 - A. Stars have color, brightness, mass, temperature and size.
 - B. Distances to stars are measured using stellar parallax
 - 1. The further away, the less offset
 - 2. Parallax angles are extremely small
 - 3. Measured using photographs six months apart
 - 4. Distances reported in light years--Light travels 9.5 trillion km/year
 - C. Stellar brightness function of distance, temperature and size
 - 1. Color of stars tells us their temperature
 - a. Blue stars are hotter
 - b. Red stars are cooler
 - 2. Most stars have a specific ratio of absolute brightness to color
 - a. Shows mass of star—
 - 1) larger are hotter, bluer, brighter
 - 2) smaller are cooler, redder, dimmer
 - 3) Binary star pairs
 - a) Mutually orbit around a 'center of mass'
 - b) At least half of stars are binary
 - c) Speed of orbits tell us mass of each star
 - 3. Hertzsprung-Russell diagram
 - a. Main sequence stars
 - 1) blue, bright, large, hot
 - 2) yellow, medium
 - 3) small, dim, red, cool
 - 4) Sun
 - a) in middle of main sequence—between ends
 - b) More stars have been observed smaller, cooler than larger and hotter
 - b. exceptions include red giants and white dwarfs
 - 1) color vs brightness
 - a) color shows temperature
 - b) brightness shows size
 - 2) red giants
 - a) main sequence stars—larger brighter are bluer
 - b) these are brighter, but not bluer, must be cool
 - 3) white dwarfs
 - a) hotter by color
 - b) smaller by faintness
 - 4) there is a progression through star types with age

- 4. some stars have variable brightness
 - a. pulsating of cepheid variables-
 - 1) Polaris has four day cycle—light varies about 10%
 - 2) absolute brightness related to period of brightness: longer period are brighter stars
 - b. eruptive variables perhaps stellar pair swapping H₂ irregular period of nova stars: Nova Herculus, Nova Persei
- D. Interstellar matter—dust and gases of Nebulae—large and massive
 - 1. emission (bright) nebula absorbs ultraviolet, emits visible light—fluorescence: Orion Nebula
 - 2. reflection nebula composed of interstellar dust reflects nearby star light: Pleiades star cluster
 - 3. dark nebula has no nearby star light to reflect—appear opaque