
The Singular Value Decomposition in
Symmetric (Löwdin) Orthogonalization

and Data Compression

The SVD is the most generally applicable of the orthogonal-diagonal-orthogonal
type matrix decompositions

Every matrix, even nonsquare, has an SVD

The SVD contains a great deal of information and is very useful as a theoretical
and practical tool

*******************************************************************

1 Preliminaries

Unless otherwise indicated, all vectors are column vectors

u ∈ Rn =⇒ u =




u1

u2
...

un


 ∈ Rn×1
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Definition 1.1 Let u ∈ Rn, so that u = (u1, u2, . . . un)T . The (Euclidean) norm
of u is defined as

‖u‖2 =
√

u2
1 + u2

2 + · · ·+ u2
n =

(
n∑

j=1

u2
j

)1/2

Definition 1.2 A vector u ∈ Rn is a unit vector or normalized if

‖u‖2 = 1

===========================================

Definition 1.3 Let A = (aij) ∈ Rm×n. The transpose AT of A is the matrix
(aji) ∈ Rn×m.

===========================================

Example 1.4
(

1 0 3
2 −1 −4

)T

=




1 2

0 −1

3 −4
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Definition 1.5 (Matrix Multiplication) Let A ∈ Rm×n, B ∈ Rn×p. Then the
product AB is defined element-wise as

(AB)ij =
n∑

k=1

aikbkj

and the matrix AB ∈ Rm×p

===========================================

Definition 1.6 Let u, v ∈ Rn. Then the inner product of u and v, written 〈u, v〉
is defined as

〈u, v〉 =
n∑

j=1

ujvj = uTv

===========================================

Note that this notation permits us to write matrix multiplication as entry-wise
inner products of the rows and columns of the matrices

===========================================

If we denote the ith row of A by iA and the jth column of B by Bj we have

(AB)ij = 〈 (iA)T , Bj 〉 = iABj
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Example 1.7

(
−1 1 0

3 −2 1

)


2 3
0 −2

6 −3




=



−1 · (2) + 1 · (0) + 0 · (6) −1 · (3) + 1 · (−2) + 0 · (−3)

3 · (2) +−2 · (0) + 1 · (6) 3 · (3) +−2 · (−2) + 1 · (−3)




=

(
−2 −5
12 10

)

===========================================

Definition 1.8 Two vectors u, v ∈ Rn are orthogonal if

〈 u , v 〉 = uT v =
(
u1 u2 · · · un

)




v1

v2
...
vn




= u1v1 + u2v2 + · · ·+ unvn = 0

===========================================

If u, v are orthogonal and both ‖u‖2 = 1 and ‖v‖2 = 1, then we say u and v

are orthonormal
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Recall that the n-dimensional identity matrix is

In =




1 0 · · · 0

0 1
...

... . . .

0 · · · 1




We’ll write I for the identity matrix when the size is clear from the context.

===========================================

Definition 1.9 A square matrix Q ∈ Rn×n is orthogonal if QT Q = I.

===========================================

This definition means that the columns of an orthogonal matrix A are mutually
orthogonal unit vectors in Rn

===========================================

Alternatively, the columns of A are an orthonormal basis for Rn

===========================================

Now Definition 1.9 shows that QT is the left-inverse of Q
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But since matrix multiplication is associative, QT is the right-inverse (and hence
the inverse) of Q - indeed, let P be a right-inverse of Q (so that QP = I); then

(QT Q)P = QT (QP ) ⇐⇒ IP = QT I ⇐⇒ P = QT

===========================================

The SVD is applicable to even nonsquare matrices with complex entries, but for
clarity we will restrict our initial treatment to real square matrices

*******************************************************************

2 Structure of the SVD

Definition 2.1 Let A ∈ Rn×n. Then the (full) singular value decomposition of
A is

A = UΣV T =




U1 U2 · · · Um







σ1 0 · · · 0

0 σ2 · · · 0
... . . . 0

0 · · · σn

0 · · · · · · 0
...

...
0 · · · · · · 0







(V1)
T

(V2)
T

...

(Vn)
T




.

where U, V are orthogonal matrices and Σ is diagonal

The σi’s are the singular values of A, by convention arranged in nonincreasing
order

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0;

the columns of U are termed left singular vectors of A; the columns of V are
called right singular vectors of A
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Since U and V are orthogonal matrices, the columns of each form orthonormal
(mutually orthogonal, all of length 1) bases for Rn

===========================================

We can use these bases to illuminate the fundamental property of the SVD:

===========================================

For the equation Ax = b, the SVD makes every matrix diagonal by
selecting the right bases for the range and domain

===========================================

Let b, x ∈ Rn such that Ax = b, and expand b in the columns of U and x in the
columns of V to get

b′ = UT b, x′ = V Tx.
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Then we have

b = Ax ⇐⇒ UT b = UTAx

= UT (UΣV T )x

= (UTU)Σ(V Tx)

= IΣx′

= Σx′

or

b = Ax ⇐⇒ b′ = Σx′

===========================================

Let y ∈ Rn, then the action of left multiplication of y by A (computing
z = Ay) is decomposed by the SVD into three steps

z = Ay

= (UΣV T ) y = UΣ(V Ty)

= UΣ c (c := V Ty)

= Uw (w := Σ c)
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c = V Ty is the analysis step, in which the components of y, in the basis of Rn

given by the columns of V, are computed

===========================================

w = Σc is the scaling step in which the components ci, i ∈ {1, 2, . . . , n} are
dilated

===========================================

z = Uw is the synthesis step, in which z is assembled by scaling each of the
Rn-basis vectors ui by wi and summing
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So how do we find the matrices U, Σ, and V in the SVD of some A ∈ Rn×n?

===========================================

Since V TV = I = UTU, A = UΣV T yields

AV = UΣ and (1)

UTA = ΣV T or, taking transposes

ATU = V Σ (2)

===========================================

Or, for each j ∈ {1, 2, . . . , n},

Avj = σjuj from Equation 1 (3)

ATuj = σjvj from Equation 2 (4)

===========================================

Now we multiply Equation 3 by AT to get
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ATAvj = ATσjuj

= σjA
Tuj

= σ2
j vj

===========================================

So the vj ’s are the eigenvectors of ATA with corresponding eigenvalues σ2
j

===========================================

Note that (ATA)ij = iAAj or

ATA =




1AA1 1AA2 · · · 1AAn

2AA1 2AA2
...

... . . .

nAA1 · · · nAAn




(5)

ATA is a matrix of inner products of columns of A - often called the Gram
matrix of A

We’ll see the Gram matrix again when considering applications
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Let’s do an example:

A =




1 0 −1

1 1 0
−1 0 −1


 =⇒ AT =




1 1 −1

0 1 0
−1 0 −1




=⇒ ATA =




3 1 0

1 1 0

0 0 2




===========================================

To find the eigenvectors v and the corresponding eigenvalues λ for B := ATA,

we solve

Bx = λx ⇐⇒ (B − λI)x = 0

for λ and x
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The standard technique for finding such λ and v is to first note that we are
looking for the λ that make the matrix

B − λI =




3 1 0
1 1 0

0 0 2


 −




λ 0 0
0 λ 0

0 0 λ


 =




3 − λ 1 0
1 1− λ 0

0 0 2− λ




singular

===========================================

This is most easily done by solving det(B − λI) = 0 :

∣∣∣∣∣∣

3− λ 1 0
1 1− λ 0

0 0 2− λ

∣∣∣∣∣∣
= (3 − λ)(1 − λ)(2 − λ) − 2 + λ

= −λ3 + 6λ2 − 10λ + 4 = 0

⇐⇒

σ2
1 = λ1 = 2 +

√
2

σ2
2 = λ2 = 2

σ2
3 = λ3 = 2−

√
2
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Now (for a gentle first step) we’ll find a vector v2 so that ATAv2 = 2v2

===========================================

We do this by finding a basis for the nullspace of

ATA− 2I =




3 − 2 1 0
1 1 − 2 0

0 0 2 − 2


 =




1 1 0
1 −1 0

0 0 0




===========================================

Certainly any vector of the form




0

0

t


 , t ∈ R, is mapped to zero by

ATA− 2I

===========================================

So we can set v2 =




0

0

1
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To find v1 we find a basis for the nullspace of

ATA− (2 +
√

2)I =




1 −
√

2 1 0

1 −1 −
√

2 0

0 0 −
√

2




which row-reduces ( R2 ←− (1 +
√

2)R1 + R2, then R3 ←→ R2 ) to




1 −
√

2 1 0

0 0 −
√

2

0 0 0




===========================================

So any vector of the form




s

(−1 +
√

2)s

0




is mapped to zero by

ATA− (2 +
√

2)I

===========================================

so v′1 =




1

−1 +
√

2

0




spans the nullspace of ATA− λ1I, but ‖v′1‖ 6= 1
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So we set v1 =
v′1
‖v′1‖

=
1√

4− 2
√

2




1

−1 +
√

2

0




===========================================

We could find v3 in a similar manner, but in this particular case there’s a
quicker way...

===========================================

v3 =




−(v1)2

(v1)1

0




=
1√

4 − 2
√

2




1−
√

2

1

0




Certainly v3 ⊥ v2 and by construction v3 ⊥ v1 - recall the theorem from linear
algebra symmetric matrices must have orthogonal eigenvectors
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We’ve found V =




v1 v2 v3




=




1√
4−2

√
2

0 1−
√

2√
4−2

√
2

−1+
√

2√
4−2

√
2

0 1√
4−2

√
2

0 1 0




===========================================

And of course

Σ =




√
2 +
√

2 0 0

0
√

2 0

0 0
√

2 −
√

2




===========================================

Now, how do we find U?
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If σn > 0, Σ is invertible and

U = AV Σ−1

===========================================

So we have

U =




1 0 −1

1 1 0

−1 0 −1







1√
4−2

√
2

0 1−
√

2√
4−2

√
2

−1+
√

2√
4−2

√
2

0 1√
4−2

√
2

0 1 0







1√
2+

√
2

0 0

0 1√
2

0

0 0 1√
2−

√
2




=




1 0 −1

1 1 0

−1 0 −1







1
2 0 −1

2

−1+
√

2
2 0 1

2(
√

2−1)

0 1√
2

0




=




1
2 − 1√

2
−1

2

1√
2

0 1√
2

−1
2 − 1√

2
1
2
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Figure 1: The columns of A in the unit sphere
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Figure 2: The columns of U in the unit sphere
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Figure 3: The columns of V in the unit sphere
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Figure 4: The columns of Σ in the ellipse formed by Σ acting on the unit sphere by left-multiplication

Figure 5: The columns of AV = UΣ in the ellipse formed by A acting on the unit sphere by left-multiplication

===========================================

Note that the columns of U and V are orthogonal (as are, of course, the
columns of Σ)
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Note that in practice, the SVD is computed more efficiently than by the direct
method we used here; usually by (OK, get ready for the gratuitous mathspeak)

reducing A to bidiagonal form U1BV T
1 by elementary reflectors or Givens ro-

tations and

directly computing the SVD of B (= U2ΣV T
2 )

then the SVD of A is ( U1 U2 ) Σ ( V T
2 V T

1 )

===========================================

If σn = 0, then A is singular and the entire process above must be modified
slightly but carefully.

===========================================

If r is the rank of A (the number of nonzero rows of the row-echelon form of A)
then

n− r singular values of A are zero (equivalently if there are n− r zero rows in
the row-echelon form of A), so

Σ−1 is not defined, and we define the pseudo-inverse Σ+ of Σ as

Σ+ = diag(σ−1
1 , σ−1

2 , . . . , σ−1
r , 0, . . . , 0)
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Thus we can define the first r columns of U via AV Σ+ and to complete U we
choose any n− r orthonormal vectors which are also orthogonal to

span{u1, u2, . . . , ur}, via, for example, Gram-Schmidt

===========================================

Recall that the SVD is defined for even nonsquare matrices

===========================================

In this case, the above process is modified to permit U and V to have different
sizes

===========================================

If A ∈ Rm×n, then

U ∈ Rm×m

Σ ∈ Rm×n

V ∈ Rn×n

24



In the case m > n :

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

... . . . ...

am1 · · · amn




=




u11 u12 · · · u1n · · · u1m

u21 u22 · · · u2n · · · u2m

... . . . ...

um1 · · · umn · · · umm







σ1 0 · · · 0

0 σ2 · · · 0
... . . . 0

0 · · · σn

0 · · · · · · 0
...

...
0 · · · · · · 0







v11 v12 · · · v1n

v21 v22
...

... . . .

vn1 · · · vnn




or, in another incarnation of the SVD (the reduced SVD)

A =




u11 u12 · · · u1n

u21 u22
...

... . . .

um1 · · · umn







σ1 0 · · · 0

0 σ2 · · · 0
... . . . ...
0 · · · σn







v11 v12 · · · v1n

v21 v22
...

... . . .

vn1 · · · vnn




where the matrix U is no longer square (so it can’t be orthogonal) but still has
orthonormal columns
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If m < n:

A =




a11 a12 · · · a1m · · · a1n

a21 a22 · · · · · · a2n
... . . . ...

am1 · · · amn




=




u11 u12 · · · u1n

u21 u22
...

... . . .

un1 · · · unn




×




σ1 0 · · · 0 0 · · · 0
0 σ2 · · · 0 0 · · · 0
... . . . ...

...
0 · · · σn 0 · · · 0




×




v11 v12 · · · v1n · · · v1m

v21 v22 · · · v2n · · · v2m
... . . . ...

vn1 vn2 · · · vnn · · · vnm

... . . . ...

vm1 · · · vmn · · · vmm
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In which case the reduced SVD is

A =




u11 u12 · · · u1n

u21 u22
...

... . . .

un1 · · · unn







σ1 0 · · · 0

0 σ2 · · · 0
... . . . ...
0 · · · σn







v11 v12 · · · v1n · · · v1m

v21 v22 · · · v2n · · · v2m
... . . . ...

vn1 vn2 · · · vnn · · · vnm




*******************************************************************

3 Properties of the SVD

Recall r is the rank of A; the number of nonzero singular values of A

===========================================

range (A) = span {u1, u2, . . . , ur}

range (AT ) = span {v1, v2, . . . , vr}

null (A) = span {vr+1, vr+2, . . . , vn}

null (AT ) = span {ur+1, ur+2, . . . , um}
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For A ∈ Rn×n, | det A | =
n∏

i=1

σi

===========================================

The SVD of an m× n matrix A leads to an easy proof that the image of the
unit sphere Sn−1 under left-multiplication by A is a hyperellipse with semimajor

axes of length σ1, σ2, . . . , σn

===========================================

The condition number of an m × n matrix A, with m ≥ n, is

κ(A) =
σ1

σn

Used in numerics, κ(A) is a measure of how close A is to being singular with
respect to floating-point computation

===========================================

The 2-norm of A is ‖A‖2 := sup

{
‖Ax‖2

∣∣∣∣ ‖x‖2 = 1

}

The Frobenius norm of A is ‖A‖F :=

(
m∑

i=1

n∑

j=1

a2
ij

)1/2
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We have

‖A‖2 = σ1 and ‖A‖F =
√

σ2
1 + σ2

2 + · · · + σ2
n

since both matrix norms are invariant under orthogonal transformations
(multiplication by orthogonal matrices)

===========================================

Note that although the singular values of A are uniquely determined, the left
and right singular vectors are only determined up to a sequence of sign choices

for the columns of either U or V

===========================================

So the SVD is not generally unique, there are 2(max m,n) possible SVD’s for a
given matrix A

===========================================

If we fix signs for, say, column 1 of V, then the sign for column 1 of U is
determined - recall AV = UΣ
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4 Symmetric Orthogonalization

For nonsingular A, the matrix L := UV T is called the symmetric
orthogonalization of the matrix A

===========================================

L is unique since any sequence of sign choices for the columns of V determines
a sequence of signs for the columns of U

===========================================

Lij = Ui1(V
T )1j + Ui2(V

T )2j + Ui3(V
T )3j + · · · + Uin(V T )ni

= Ui1Vj1 + Ui2Vj2 + Ui3Vj3 + · · · + UinVjn

===========================================

Like Gram-Schmidt orthogonalization, it takes as input a linearly independent
set (the columns of A) and outputs an orthonormal set
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(Classical) Gram-Schmidt is unstable due to repeated subtractions; Modifed
Gram-Schmidt remedies this

===========================================

But occasionally we want to disturb the original set of vectors as little as
possible

===========================================

Theorem 4.1 Over all orthogonal matrices Q, , ‖A − Q‖F is minimized when
Q = L.
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Figure 6: The columns of L := UV T and the columns of A
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5 Applications of the SVD

Symmetric Orthogonalization was invented by a Swedish chemist, Per-Olov
Löwdin, for the purpose of orthogonalizing hybrid electron orbitals

===========================================

Also has application in 4G wireless communication standard, Orthogonal
Frequency-Division Multiplexing (OFDM)

===========================================

Nonorthogonal carrier waves with ideal properties, good time-frequency
localization, orthogonalized in this manner have maximal TF-localization among

all orthogonal carriers

===========================================

Carrier waves are continuous (complex-valued) functions and not matrices, but
there is an inner product defined for pairs of carrier waves via integration

===========================================

With that inner product, the Gram matrix of the set of carrier waves can be
computed
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The symmetrically orthogonalized Gram matrix is then used to provide
coefficients for linear combinations of the carrier waves

===========================================

These linear combinations are orthogonal (hence suitable for OFDM) and
optimally TF-localized

===========================================

The SVD also has a natural application to finding the least squares solution to
Ax = b (i.e., a vector x with minimal ‖Ax − b‖2) where Ax = b is inconsistent

(e.g., A ∈ Rm×n , m > n , r = n)

===========================================

But perhaps the most visually striking property of the SVD comes from an
application in image compression
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We can rewrite Σ as




σ1 0 · · · 0

0 σ2
...

... . . .

0 · · · σn


 =




σ1 0 · · · 0

0 0
...

... . . .

0 · · · 0




︸ ︷︷ ︸
Σ1

+




0 0 · · · 0

0 σ2
...

... . . .

0 · · · 0




︸ ︷︷ ︸
Σ2

+ . . . +




0 0 · · · 0

0 0
...

... . . .

0 · · · σn




︸ ︷︷ ︸
Σn

= Σ1 + Σ2 + · · · + Σn

===========================================

Now consider the SVD

A =




U1 U2 · · · Un




(
Σ1 + Σ2 + · · · + Σn

)



(V1)
T

(V2)
T

...

(Vn)
T
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and focus on, say, the first term




U1 U2 · · · Un




(
Σ1

)



(V1)
T

(V2)
T

...

(Vn)
T




=




σ1U1 0 · · · 0







(V1)
T

(V2)
T

...

(Vn)
T




=




σ1U1 0 · · · 0







(V1)
T

0
...

0




= σ1U1(V1)
T

In general UΣkV
T = σkUk(Vk)

T

So A =
n∑

j=1

σjUj(Vj)
T

which is an expression of A as a sum of rank-one matrices
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In this representation of A, we can consider partial sums

===========================================

For any k with 1 ≤ k ≤ n, define

A(k) =
k∑

j=1

σjUj(Vj)
T

===========================================

This amounts to discarding the smallest n− k singular values and their
corresponding singular vectors, and storing only the Vj ’s and the sjUj ’s

===========================================

Theorem 5.1 Among all rank-k matrices P, ‖A−P‖F is minimized for P = A(k)

===========================================

Theorem 5.1 says that the kth partial sum of A(n) captures as much of the
“energy” of A as possible
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Example Consider the 320-by-200-pixel image below

This is stored as a 320 × 200 matrix of grayscale values, between 0 (black) and
1 (white), denoted by Aclown

===========================================

We can take the SVD of Aclown
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By Theorem 5.1, A
(k)
clown is the best rank-k approximation to Aclown, measured by

the Frobenius norm

===========================================

Storage required for A
(k)
clown is a total of (320 + 200) · k bytes for storing σ1u1

through σkuk and v1 through vk

===========================================

320 · 200 = 64, 000 bytes required to store Aclown explicitly

===========================================

Now consider the rank-20 approximation to the original image, and the
difference between the images
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Figure 7: Rank-20 approximation A
(20)
clown and A − A

(20)
clown
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The original image took 64 kb, while the low-rank approximation required
(320 + 200) · 20 = 10.4 kb, a compression ratio of .1625

===========================================

The SVD can also make you rich - but that’s a topic for another time...

===========================================

For further investigation, see

“Numerical Linear Algebra” by Trefethen

“Applied Numerical Linear Algebra” by Demmel

“Matrix Analysis” by Horn and Johnson

“Matrix Computations” by Golub and van Loan
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