Löwdin Orthogonalization -
A Natural Supplement to Gram-Schmidt

The SVD is the most generally applicable of the orthogonal-diagonal-orthogonal type matrix decompositions.

The SVD contains a great deal of information and is very useful as a theoretical and practical tool.

Its importance in numerical linear algebra, data compression, and least-squares problem is widely known.

Perhaps less well-known is that the SVD yields a mathematically beautiful orthogonalization technique.
1 Preliminaries

We'll assume that $A \in \mathbb{R}^{m \times n}$ with $m \geq n$.

Everything that follows has an obvious dual counterpart for the case $m < n$

All that follows holds, with appropriate modifications, for complex-valued matrices

Definition 1.1 Let $A \in \mathbb{R}^{m \times n}$. Then the full singular value decomposition of A is

$$A = U \Sigma V^T = \begin{pmatrix} U_1 & U_2 & \cdots & U_m \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \sigma_n \end{pmatrix} \begin{pmatrix} (V_1)^T \\ (V_2)^T \\ \vdots \\ (V_n)^T \end{pmatrix}$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal, and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal

The σ_i's are the singular values of A, by convention arranged in nonincreasing order

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0;$$

The columns U_j of U are called left singular vectors of A; the columns V_j of V are called right singular vectors of A
Another incarnation of the SVD is the reduced SVD

\[
A = \begin{pmatrix}
 u_{11} & u_{12} & \cdots & u_{1n} \\
 u_{21} & u_{22} & \vdots & \vdots \\
 \vdots & \vdots & \ddots & \vdots \\
 u_{m1} & \cdots & & u_{mn}
\end{pmatrix}
\begin{pmatrix}
 \sigma_1 & 0 & \cdots & 0 \\
 0 & \sigma_2 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & \cdots & & \sigma_n
\end{pmatrix}
\begin{pmatrix}
 v_{11} & v_{12} & \cdots & v_{1n} \\
 v_{21} & v_{22} & \vdots & \vdots \\
 \vdots & \vdots & \ddots & \vdots \\
 v_{n1} & \cdots & & v_{nn}
\end{pmatrix}
\]

where the matrix \(U \) is no longer square (so it can’t be orthogonal) but still has orthonormal columns, \(\Sigma \) is square and diagonal, and \(V \) is still orthogonal.

It is the reduced SVD which we’ll use for our orthogonalization technique.

The Frobenius norm of \(A \) is \(\|A\|_F := \left(\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2 \right)^{1/2} \)

Lemma 1.2 Let \(A \in \mathbb{R}^{m \times n} \), \(m \geq n \), \(x \in \mathbb{R}^n \). Let \(P \) be a matrix in \(\mathbb{R}^{n \times m} \) with orthonormal rows, and \(Q \) be a matrix in \(\mathbb{R}^{m \times n} \) with orthonormal columns. Then

\[
\|AP\|_F = \|A\|_F \quad \text{and} \quad \|Qx\|_2 = \|x\|_2
\]
Note that although the singular values of \(A \) are uniquely determined, the left (or right) singular vectors are only determined up to sign.

If we fix signs for \(V_j \), then the signs for \(U_j \) are determined.

2 Löwdin (Symmetric) Orthogonalization

For nonsingular \(A \) with reduced SVD \(A = U \Sigma V^T \), the matrix \(L := UV^T \) is called the Löwdin orthogonalization of the matrix \(A \).

Discovered (in a non-SVD form) by a Swedish chemist, Per-Olov Löwdin, for the purpose of orthogonalizing hybrid electron orbitals.

\(L \) is unique since any sequence of sign choices for the columns of \(V \) determines a sequence of signs for the columns of \(U \).
Like Gram-Schmidt orthogonalization, it takes as input a linearly independent set (the columns of A) and outputs an orthonormal set (the columns of UV^T)

(Classical) Gram-Schmidt is unstable due to repeated subtractions; Modified Gram-Schmidt (usually) remedies this

But occasionally we want to disturb the original set of vectors as little as possible

Theorem 2.1. Let $m \geq n$, $A \in \mathbb{R}^{m \times n}$, and suppose that A has full rank. Over all matrices $Q \in \mathbb{R}^{m \times n}$ with orthonormal columns, $\| A - Q \|_F$ is minimized when $Q = UV^T$.

5
Proof: Let $Q \in \mathbb{R}^{m \times n}$ with $Q^TQ = I_{n \times n}$. Fix the reduced SVD of A be $A = U\Sigma V^T$ by fixing a sequence of signs for the columns of V. By Lemma 1.2, we have

$$
\|A - Q\|_F = \|U\Sigma V^T - Q\|_F = \|U\Sigma - QV\|_F
$$

The problem we must solve is to specify

$$
\arg \left\{ \min \left\{ \|U\Sigma - QV\|_F \mid Q^TQ = I_{n \times n} \right\} \right\} \quad (3)
$$

or, equivalently (because $f(x) = x^2$ is increasing),

$$
\arg \left\{ \min \left\{ \|U\Sigma - QV\|_F^2 \mid Q^TQ = I_{n \times n} \right\} \right\}
$$

Denote $X := QV$ and note that

$$
\arg \left\{ \min \left\{ \|U\Sigma - QV\|_F^2 \mid Q^TQ = I_{n \times n} \right\} \right\} = V^T \left(\arg \left\{ \min \left\{ \|U\Sigma - X\|_F^2 \mid X^TX = I_{n \times n} \right\} \right\} \right)
$$
Thus we seek to solve

\[
\arg \left\{ \min \left\{ \| U \Sigma - X \|_F^2 \ \bigg| \ X^T X = I_{n \times n} \right\} \right. \tag{4}
\]

We have

\[
\| U \Sigma - X \|_F^2 = \|(U \Sigma - X)_1\|_2^2 + \|(U \Sigma - X)_2\|_2^2 + \cdots + \|(U \Sigma - X)_n\|_2^2
\]
\[
= \|(\sigma_1 U_1 - X_1)\|_2^2 + \|(\sigma_2 U_2 - X_2)\|_2^2 + \cdots + \|(\sigma_n U_n - X_n)\|_2^2.
\]

Suppose we minimize each of the \(\| \sigma_j U_j - X_j \|_2^2 \) individually. Will the column-wise concatenation of such solutions yield a solution to (4)? Yes, if the constraint

\[
X^T X = I_{n \times n}
\]

is satisfied. \(\tag{5} \)
Consider the j^{th} column in $U\Sigma - X$:

$$(U\Sigma - X)_j = (\sigma_j U_j - X_j) = \begin{pmatrix} \sigma_j u_{1j} - x_{1j} \\ \sigma_j u_{2j} - x_{2j} \\ \vdots \\ \sigma_j u_{nj} - x_{nj} \end{pmatrix}$$

Now

$$\|(U\Sigma - X)_j\|_2^2 = \sum_{k=1}^n (\sigma_j u_{kj} - x_{kj})^2$$

$$= \sigma_j^2 \sum_{k=1}^n u_{kj}^2 - 2\sigma_j \sum_{k=1}^n u_{kj}x_{kj} + \sum_{k=1}^n x_{kj}^2$$

$$= \sigma_j^2 - 2\sigma_j \sum_{k=1}^n u_{kj}x_{kj} + 1 \quad \text{(by Lemma 1.2)}.$$
This is clearly maximized when \(X_j = U_j \), so the constraint \(X^T X = I_{n \times n} \) is satisfied and

\[
X = QV = U \quad \text{solves the arg-min problem (4), so} \\
Q = U V^T \quad \text{solves the arg-min problem (3).}
\]

In the case that \(\text{rank}(A) < n \), \(L \) still solves (3) but is not the unique minimizer.

\begin{example}

A = \[
\begin{pmatrix}
1 & 0 & -1 \\
1 & 1 & 0 \\
-1 & 0 & -1
\end{pmatrix}
\]

L = \[
\begin{pmatrix}
\frac{\sqrt{2}}{2} & -1 + \frac{\sqrt{2}}{2} & -1 \\
\frac{2}{\sqrt{4 - 2\sqrt{2}}} & \frac{1}{\sqrt{4 - 2\sqrt{2}}} & 0 \\
\frac{1}{\sqrt{4 - 2\sqrt{2}}} & \frac{1 - \sqrt{2}}{\sqrt{4 - 2\sqrt{2}}} & -1
\end{pmatrix}
\]

U = \[
\begin{pmatrix}
\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
-\frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2}
\end{pmatrix}
\]

V^T = \[
\begin{pmatrix}
\frac{1}{\sqrt{4 - 2\sqrt{2}}} & -1 + \frac{\sqrt{2}}{2} & 0 \\
0 & \frac{1}{\sqrt{4 - 2\sqrt{2}}} & 0 \\
\frac{1 - \sqrt{2}}{\sqrt{4 - 2\sqrt{2}}} & 1 & 0
\end{pmatrix}
\]
\end{example}
Figure 1: The columns of $L = UV^T$ and the columns of A
3 Why Include This In Your Linear Algebra Course?

There are a lot of orthogonalization techniques - in fact, U from the reduced $A = U\Sigma V^T$ is a perfectly good orthogonalization of A

Gram-Schmidt requires the choice of distinguished (initial) vector, but Löwdin orthogonalization is egalitarian in the sense that it gives all vectors equal footing

The Löwdin orthogonalization L of a matrix A with linearly independent columns optimally resembles A (and of course $-L$ is maximally distant from A)

The proof of Theorem 2.1 uses simple optimization and is just plain fun; it’s slightly simpler in the case of square A

Can present in class the proof of the square case, then assign a project in which students find where in the non-square case the proof breaks down, and repair it

Time permitting, investigation into the rank-deficient case is worthwhile
Scott Beaver

Western Oregon University

beavers@wou.edu

http://www.wou.edu/~beavers