- **1.** $f(x) = 2x^3$
 - a. Using Pascal's Triangle and the Binomial Coefficients as a guide, multiply out $f(x + h) = 2(x + h)^3$.
 - b. Use Fermat's Method and your work from part a) to compute f'(x) for $f(x) = 2x^3$.
- 2. For each of the following, use the Power rule to determine f'(x). Carefully show your work, don't skip steps. Give your answers without negative exponents.
 - **a.** $f(x) = x^7$
 - **b.** $f(x) = \sqrt[3]{x} = x^{\frac{1}{3}}$
 - **C.** $f(x) = \frac{1}{x^4}$
 - **d.** $f(x) = x^{\pi}$
 - **e.** $f(x) = \frac{1}{\sqrt[4]{x}}$
 - $f. \quad f(x) = \sqrt{x^5}$

g.
$$f(x) = \frac{x^2}{\sqrt[5]{x^3}}$$

3. Find the equation of the tangent line of each of the above at x = 1 for the functions in 2b and 2c.