1. Use Fermat's Method to compute the derivative of $y=m x+b$ where m and b are any real numbers. Explain your result.
2.

a. Use Fermat's Method to compute the derivative of $y=(x-1)^{2}$. Hint: To compute $(x+h-1)^{2}$, think of $h-1$ as "one number," then multiply in stages. The first stage is: $(x+[h-1])^{2}=x^{2}+2 x(h-1)+(h-1)^{2}$.
b. Sketch $y=(x-1)^{2}$ and $y=x^{2}$ together on the same grid.
c. Sketch the tangent line at $x=2$ for $y=x^{2}$ and determine the equation for the line.
d. For which value of x is the tangent line for $y=(x-1)^{2}$ parallel to the tangent line at $x=2$ for $y=x^{2}$? Give the point, sketch the line and determine the equation for the line. Label clearly.
3.
a. Use Fermat's Method to compute the derivative of $y=-(x-1)^{2}$.
b. Sketch $y=-(x-1)^{2}$ and $y=(x-1)^{2}$ together on the same grid.
c. Sketch the tangent line at $x=2$ for $y=(x-1)^{2}$ and the tangent line at $x=2$ for $y=-(x-1)^{2}$ and determine the equation for each line. Label clearly.
d. How does the derivative of $y=-(x-1)^{2}$ compare to derivative of $y=(x-1)^{2}$? How can you see this in your graphs? Explain.

