- 1. Carefully sketch on graph paper the graph of the equation $f(x) = -3x^2+7x$ over the window
 - $-1 \le x \le 3$ and $-10 \le f(x) \le 5$. Grid paper can be downloaded from our class website.
 - a. Find the average rate of change of the function between x = -1 and x = 3. Sketch the corresponding secant line on the graph. Label the line a.
 - b. Find the average rate of change of the function between x=0 and x=2.
 - c. Find the instantaneous rate of change at x=0 by sketching the tangent line at x=0 and finding the slope by estimating points on the line. Label the line c and show all work.
 - d. Find the instantaneous rate of change at x=2 by using a numerical approach and filling in the following table. Be sure to state your answer. Use at <u>least 6 decimal</u> <u>places</u> in $f(x_2)$.

	$f(x_1)$	<i>x</i> ₂	$f(x_2)$	Slope of secant: $\frac{f(x_2) - f(x_1)}{x_2 - x_1}$
2		1.9		
2		1.99		
2		1.999		
2		2.1		
2		2.01		
2		2.001		

- e. Find the instantaneous rate of change at x = -3 using the numerical approach. Make your own table such as the one in d with appropriately changed numbers.
- 2. Carefully sketch a graph of the curve f(x) = sin(x) over the interval $-2\pi \le x \le 2\pi$ (Your calculator must be in RADIAN mode.)
 - a. List at least three points for which the slope of the tangent line is zero.
 - b. Find the instantaneous rate of change at x=0 by sketching the tangent line at x=0 and finding the slope by estimating points on the line.
 - c. Use the numerical method with a table to estimate the slope of the tangent line at x=0. Show all work and values used.
 - d. Repeat b using the point $x = \pi$
 - e. Repeat c using the point $x = \pi$ (SKIP _ SAME AS LAST)
 - f. The domain for f(x) = sin(x) is all real numbers. List 10 other x values for which you expect the tangent line at x to have the same slope as the tangent line at 0.
 - g. The domain for f(x) = sin(x) is all real numbers. List 10 other x values for which you expect the tangent line at x to have the same slope as the tangent line at π .
 - h. Based on your work can you guess a formula for the instantaneous rate of change of sin(x) at any value x? (Hint: Try graphing the points and the slope of the tangent lines you found in f and g and sketching in the curve does it look familiar?)