1. $f(x)=-x+2$
a. Compute the antiderivative, $g(x)$, of $f(x)=-x+2$
b. Draw a careful sketch of $f(x)=-x+2$ from $x=0$ to $x=3$.

For parts c$)-\mathrm{f}$), complete each question using:

$$
\begin{array}{ll}
\text { (i) Geometry } & \text { (ii) Integrals and integral notation. }
\end{array}
$$

c. Find the signed area under $f(x)=-x+2$ from $x=0$ to $x=1$.
d. Find the signed area under $f(x)=-x+2$ from $x=0$ to $x=3$.
e. Find the signed area under $f(x)=-x+2$ from $x=1$ to $x=3$.
f. Use integrals and algebra to find a positive value of a so that the signed area under $f(x)=-x+2$ from $x=0$ to $x=a$ is zero (no credit for guessing).
2. $f(x)=-x^{2}+1$
a. Using an interval of width 0.5 , sketch $f(x)=-x^{2}+1$ from $x=-2$ to $x=3$ with left bound rectangles and sketch a second copy of $f(x)=-x^{2}+1$ from $x=-2$ to $x=3$ with right bound rectangles. Note, some rectangles will have a height of zero.
b. Estimate the left, the right and the average signed areas under $f(x)=-x^{2}+1$ from $x=-2$ to $x=3$ using function values and your sketches from part a).
c. How good of an estimate of the signed area from $x=-2$ to $x=3$ do you think your average estimate is? Is your estimate a little too big or a little too small? Explain.
d. Use calculus to exactly determine the signed area under $f(x)=-x^{2}+1$ from $x=-2$ to $x=3$. Use integral notation.
3. $f(x)=-x(x+3)(x-2)$
a. Completely multiply out $f(x)=-x(x+3)(x-2)$.
b. Compute the antiderivative of $f(x)$.
c. Draw a careful sketch of $f(x)$ and then, for each part, answer the following: Should the signed area be positive or negative?
(i) From $x=-3$ to $x=0$?
(ii) From $x=0$ to $x=2$?
(iii) From $x=2$ to $x=4$?
(iv) From $x=-3$ to $x=4$?
d. Using calculus, compute each of the following:
(i) $\int_{-3}^{0} f(x) d x$
(ii) $\int_{0}^{2} f(x) d x$
(iii) $\int_{2}^{4} f(x) d x$
(iv) $\int_{-3}^{4} f(x) d x$

