1.

a. Sketch two different functions whose derivative is $y^{\prime}=4$. In each case; give the rule for the original function and check the derivative is $y^{\prime}=4$.
b. How many possible functions satisfy this requirement?
c. Suppose $y(1)=3$ and $y^{\prime}=4$; what is the original function now? Show work.
d. Sketch $y^{\prime}=4$ and the function you determined in part c) together.
2.
a. Sketch two different functions whose derivative is $y^{\prime}=-4 x$. In each case; give the rule for the original function and check the derivative is $y^{\prime}=-4 x$.
b. How many possible functions satisfy this requirement?
c. Suppose $y(-1)=8$ and $y^{\prime}=-4 x$; what is the original function now? Show work.
d. Sketch $y^{\prime}=-4 x$ and the function you determined in part c) together.
3.
a. Sketch two different functions whose derivative is $y^{\prime}=3 x^{2}+1$. In each case; give the rule for the original function and check the derivative is $y^{\prime}=3 x^{2}+1$.
b. How many possible functions satisfy this requirement?
c. Suppose $y(0)=1$ and $y^{\prime}=3 x^{2}+1$; what is the original function now? Show work.
d. Sketch $y^{\prime}=3 x^{2}+1$ and the function you determined in part c) together.
4.
a. Sketch two different functions whose derivative is $y^{\prime}=3 \cos (x)$. In each case; give the rule for the original function and check the derivative is $y^{\prime}=3 \cos (x)$.
b. How many possible functions satisfy this requirement?
c. Suppose $y(0)=1$ and $y^{\prime}=3 \cos (x)$; what is the original function now? Show work.
d. Sketch $y^{\prime}=3 \cos (x)$ and the function you determined in part c) together.

