1. Find the value of each of the following. If the value does not exist or is undefined, write DNE.

a. $\lim _{x \rightarrow++} f(x)=$
b. $\lim _{x \rightarrow 1-} f(x)=$
c. $\lim _{x \rightarrow 1} f(x)=$
d. $\quad f(1)=$
e. $\lim _{x \rightarrow 2+} f(x)=$
f. $\lim _{x \rightarrow 2-} f(x)=$
g. $\lim _{x \rightarrow 2} f(x)=$
h. $f(2)=$
i. $\lim _{x \rightarrow 3+} f(x)=$
j. $\quad \lim _{x \rightarrow 3-} f(x)=$
k. $\lim _{x \rightarrow 3} f(x)=$
I. $f(3)=$
2. True or False? Explain each answer.
a. $\quad f(x)$ is continuous at $x=1$
b. $\quad f(x)$ is differentiable at $x=1$
c. $\quad f(x)$ is continuous at $x=2$
d. $\quad f(x)$ is differentiable at $x=2$
e. $f(x)$ is continuous at $x=3$
f. $\quad f(x)$ is differentiable at $x=3$
g. $\quad f(x)$ is continuous at $x=.5$
h. $f(x)$ is differentiable at $x=4$
3. Use the definition of the derivative (left and right hand limit tables) to find $f^{\prime}(3)$ for $f(x)=\log (x)$.
4. Use Fermat's method (with the limits, not our rules) to find $\frac{d y}{d x}$ for $y=\frac{1}{x}$. Simplify completely (You should know the answer by the power rule, but be sure to show all steps using Fermat's method.)
5. I pace back and forth in and out of my office because I keep forgetting things. My distance from my office door in feet is given by the formula $f(t)=t \sin (t)$ for $0 \leq t \leq 12$ seconds. Consider positive values to be outside my office and negative values to be inside my office.
a. Graph the function and estimate the time at which I am furthest from my office door. Am I inside or outside my office? Sketch a graph of the function and clearly identify this point.
b. Find the value of the derivative of $f^{\prime}(t)$ at the point you found in part (a) and explain why this value makes sense in the context of concepts we have discussed in this class.
c. How fast am I going at 5 seconds? Am I moving toward my office or away from it? How can you tell?
