Topic 12: The Chain Rule

Suppose you wished to differentiate a function such as $f(x)=(2 x-1)^{7}$. Even with Pascal's Triangle and the Binomial Coefficients, this is somewhat cumbersome to multiply out. Using the Product Rule repeatedly would lead to tedious algebra. For a function such as $g(x)=\sqrt{2 x-1}=(2 x-1)^{\frac{1}{2}}$, neither of these approaches would work. Before we discover a new rule, the Chain Rule, to differentiate such functions, we will review function composition.

Function Composition Review

Both $y=(2 x-1)^{7}$ and $y=\sqrt{2 x-1}=(2 x-1)^{\frac{1}{2}}$ can be thought of as functions of a function. For a function $f(x)$, to evaluate the function at $x=1$ or $x=a$, you would simply replace every instance of x in the function rule with the corresponding value ($x=1$ or $x=a$). To create a function of a function, you replace every instance of x in the function rule with another function rule as shown in the following example.

Example: Writing $y=(2 x-1)^{7}$ as Function Composition

Consider the functions $F(x)=2 x-1$ and $G(x)=x^{7}$. The function $y=(2 x-1)^{7}$ reads " $2 x-1$ to the seventh power." This naturally leads to the idea of the function $2 x-1$ on the INSIDE of the function "to the seventh power" where "to the seventh power" is the OUTSIDE function. Symbolically this means:

$$
G(2 x-1)=(2 x-1)^{7}
$$

Since $F(x)=2 x-1$, this is also written as $G(F(x))=G(2 x-1)=(2 x-1)^{7}$. We say $y=(2 x-1)^{7}$ is G of F of x for $G(x)=x^{7}$ and $F(x)=2 x-1$.

1. For $F(x)=x^{3}$ and $G(x)=x+1$, determine $G(F(x))$ and determine $F(G(x))$.
2. For $F(x)=2 x^{3}$ and $G(x)=3 x+1$, determine $G(F(x))$ and determine $F(G(x))$.
3. For $F(x)=\cos (x)$ and $G(x)=x^{3}+2 x+1$, determine $G(F(x))$ and determine $F(G(x))$.
4. For $F(x)=\sin (x)$ and $G(x)=e^{x}$, determine $G(F(x))$ and determine $F(G(x))$.
5. Write $y=\sqrt{2 x-1}$ as $G(F(x))$ by first writing the inside function as $F(x)$ and the outside function as $G(x)$.
6. Write $y=\left(3 x^{2}+4\right)^{11}$ as $G(F(x))$ by first writing the inside function as $F(x)$ and the outside function as $G(x)$.
7. Write $y=\sin ^{4}(x)$ as $G(F(x))$ by first writing the inside function as $F(x)$ and the outside function as $G(x)$. (Note $\sin ^{4}(x)=(\sin (x))^{4}$. The first way to write it is more standard.)
8. Write $y=e^{2 x^{4}+3}$ as $G(F(x))$ by first writing the inside function as $F(x)$ and the outside function as $G(x)$.

Deriving the Chain Rule for $f(x)^{n}$
Note: $f(x)^{n}$ is a composed function where $f(x)$ is the inside function and $y=x^{n}$ is the outside function.
10. Use the Product Rule to differentiate $f(x)^{2}$. Simplify your solution completely.
11. Use the Product Rule to differentiate $f(x)^{3}$. Start by thinking of $f(x)^{3}$ as the product of two functions $f(x)^{2} \times f(x)$ and use your results from the previous question for $\left[f(x)^{2}\right]^{\prime}$. Simplify your solution completely.
12. Use the Product Rule to differentiate $f(x)^{4}$. Start by thinking of $f(x)^{4}$ as the product of two functions $f(x)^{2} \times f(x)^{2}$ and use your results from the question 5 for $\left[f(x)^{2}\right]^{\prime}$. Simplify your solution completely.
13. What is your best guess for the derivative of $f(x)^{n}$?

In general, the derivative of a function to a power, a special case of the Chain Rule, is:

$$
\left[f(x)^{n}\right]^{\prime}=n f(x)^{n-1} f^{\prime}(x)
$$

14.

a. Multiply out $y=\left(2 x^{3}+5\right)^{2}$ completely and then determine y^{\prime} using the Sum, Power and Constant Multiples Rules.
b. Use the Chain Rule to determine the derivative of $y=\left(2 x^{3}+5\right)^{2}$.
15. Use the Chain Rule to determine the derivative of $y=(2 x-1)^{7}$.
16. Use the Chain Rule to determine the derivative of $y=\sqrt{2 x-1}=(2 x-1)^{\frac{1}{2}}$.
17. Use the Chain Rule to determine the derivative of $y=\left(3 x^{2}+4\right)^{11}$.
18. Use the Chain Rule to determine the derivative of $y=\frac{1}{\left(3 x^{2}+4\right)^{11}}$.

The Chain Rule: The chain rule applies more generally to the composition of any two functions (not just functions involving polynomials). If you have an "inside" function $g(x)$ and an "outside" function $f(x)$ then the derivative of the composition $f(g(x))$ is

$$
f(g(x))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

People often think of it verbally this way : "The derivative of the outside function evaluated at the inside function times the derivative of the inside function."

Example:
Suppose we want to find the derivative of $y=\sin \left(x^{2}-3 x\right)$
First we identify the "outside" function $f(x)$ and "inside function" $g(x)$

$$
\begin{gathered}
f(x)=\sin (x) \text { and } g(x)=x^{2}-3 x . \text { Then } \\
f^{\prime}(x)=\cos (x) \text { and } g^{\prime}(x)=2 x-3
\end{gathered}
$$

So the chain rule says $y^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$, plugging in we get

$$
y^{\prime}=\cos \left(x^{2}-3 x\right) \cdot(2 x-3)
$$

Use the chain rule to find the following derivatives:
19. $y=e^{2 x^{4}+3}$
20. $y=\sin ^{4}(x)$
21. $y=\frac{1}{\cos (x)}=(\cos (x))^{-1}$

