MTH 495/595 In-class practice answers. (Send me an email if you think one is incorrect.)

- 1. B
- 2. A
- 3. B

4. $x \in R, x \neq 4$ (the $x \in R$, part means "x is in R" or "x is a real number")

- 5. $y \in R, y \neq 0$
- 6. -1 < x < 1
- 7. $y \ge 1$
- 8. $x \ge 3$
- 9. $y \ge 0$
- 10. Secant line
- 11. Average speed between A and B
- 12. The instantaneous speed at B
- 13. The person is stopped.

14.
$$f'(x) = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right)$$

$$f'(x) = \lim_{h \to 0} \left(\frac{(x+h)^2 + 4 - (x^2 + 4)}{h} \right) = \lim_{h \to 0} \left(\frac{x^2 + 2xh + h^2 + 4 - x^2 - 4}{h} \right) =$$

15.
$$\lim_{h \to 0} \left(\frac{h(2x+h)}{h} \right) = \lim_{h \to 0} (2x+h) = 2x$$

16.
$$f'(x) = 20x^3 - 6x^2$$

17.
$$f'(x) = 0$$

18.
$$f'(x) = \frac{-6}{x^4}$$

19.
$$f'(x) = \frac{2}{\sqrt{x}}$$

20. All x
21. It's a little hard to see on the graph but approximately $\frac{1}{\sqrt{x}}$

- 21. It's a little hard to see on the graph but approximately $+/-\pi$
- 22. It's a little hard to see on the graph , but x=0 and a little to the right of -/+ π
- 23. f'(x) will have a local max or local min
- 24. 288 feet
- 25. -176 ft/sec
- 26. F

27.
$$f'(-4) \le f'(1) \le f'(2) \le f'(0) \le f'(-3) \le f'(-2) \le f'(4)$$

- 28. Answers may vary look at your graph and make sure it satisfies the criteria
- **29.** $x_1 < x < x_3$

30. *x*₁