Question 1

" A is a function of B " is written as:

$$
\begin{array}{ll}
\text { A. } & B=f(A) \\
\text { B. } & A=f(B)
\end{array}
$$

Question 2

For B as a function of A :
A. A is the Domain and B is the Range
B. B is the Domain and A is the Range

Question 3

A	B
0	1
1	2
2	3
3	5
4	5

In the above table:
A. A is a function of B
B. B is a function of A.
C. Both A\&B are true

Question 4

What is the domain of the following function?

$$
f(x)=\frac{1}{x-4}
$$

Question 5

What is the range of the following function?

$$
f(x)=\frac{1}{x-4}
$$

Question 6

What is the domain of the following function?

$$
f(x)=\frac{1}{\sqrt{1-x^{2}}}
$$

Question 7

What is the range of the following function?

$$
f(x)=\frac{1}{\sqrt{1-x^{2}}}
$$

Question 8

What is the domain of the following function?

$$
f(x)=\sqrt{2 x-6}
$$

Question 9

What is the range of the following function?

$$
f(x)=\sqrt{2 x-6}
$$

Question 10

In the graph below, what is the line connecting A and B called?

Question 11

If the graph represents distance from home, what does the slope of the line from A to B represent?

Question 12

If the graph represents distance from home what would the slope of the tangent line at B represent?

Question 13

If the graph represents distance from home of a person riding a bike, what does it mean when the graph is a horizontal line?

Question 14

Write down the expression for the derivative using Fermat's method: e.g. $f^{\prime}(x)=\ldots$...

Question 15

Use Fermat's method to find the derivative of $f(x)=x^{2}+4$.

Question 16

Use the rules we found to find the derivative of

$$
f(x)=5 x^{4}-2 x^{3}+2
$$

Question 17

Find the derivative of the following:

$$
f(x)=5
$$

Question 18

Find the derivative of the following:

$$
f(x)=\frac{2}{x^{3}}
$$

Question 19

Find the derivative of the following:

$$
f(x)=4 \sqrt{x}
$$

Question 20

Approximately where is the derivative of the graph positive?

Question 21

Approximately where is the derivative of the graph 0 ?

Question 22

Approximately where does the graph have an inflection point?

Question 23

What will $f^{\prime}(x)$ look like where $f(x)$ has an inflection point?

Question 24

A rock thrown into the air has a height t feet at time t seconds given by $h(t)=-16 t^{2}+112 t+288$ What is the initial height of the rock?

Question 25

A rock thrown into the air has a height t feet at time t seconds given by $h(t)=-16 t^{2}+112 t+288$ At what time does the rock reach its maximum height?

Question 25

A rock thrown into the air has a height t feet at time t seconds given by $h(t)=-16 t^{2}+112 t+288$ How fast is the rock going when it hits the ground?

Question 26

Given the graph of $y=f(x)$ below, circle the letter of the graph which best represents the graph of the derivative,

a.

b.

c.

d.

e.

f.

Question 27

For the function f whose graph is given, arrange the following values in increasing order
$f^{*}(-4), f^{*}(-3), f^{*}(-1), f^{*}(0), f^{*}(1), f^{\prime}(2) f^{*}(4)$

\qquad

Question 28

Sketch a graph that has the following properties:

- $f(0)=0$
- $f^{\prime}(x)>0$ for $x \leq 0$
- $f(x)$ is concave down at $x=2$
- $f(x)$ has an inflection point at $x=3$
- $f^{\prime}(x)=0$ at $x=4$

Question 29

Given the graph of $f^{\prime}(x)$, for which values of x is $f(x)$ increasing?

(NOTE: You are looking at the graph of the DERIVATIVE.)

Question 30

Given the graph of $f^{\prime}(x)$, for which value(s) of x does $f(x)$ have a local minimum?

(NOTE: You are looking at the graph of the DERIVATIVE.)

