Draw a careful sketch of f(x) = -2x + 3 from x = -3 to 3 Include dots on the graph for the x-intercept and y-intercept

Is the signed area under the curve of f(x) = -2x + 3between x= -3 to 3 positive or negative?

Compute the signed area under the curve of

$$f(x) = -2x + 3$$

between x = -3 to 3 using geometry (show work).

Computer the signed area under the curve of

$$f(x) = -2x + 3$$

between x= -3 to 3 using calculus and proper integral notation.

Express the shaded area as a definite integral

Order from smallest to largest:

$$(a)\int_{0}^{3} f(x)dx$$

$$(b)\int_{4}^{7}f(x)dx$$

$$(c)\int_{0}^{7}f(x)dx$$

$$(d)\int_{6}^{8} f(x)dx$$

- (a) f'(0)
- (b) f'(2)

Order from smallest to largest: (c) f'(4.5)

(d)f'(7)

What is the average rate of change from x = 2 to x = 5 for the function $f(x) = 2x^2 + 1$

What is the instantaneous rate of the function

$$f(x) = 2x^2 + 1$$

at the point x=3?

Use calculus (no calculator) to find all local max or mins of the function $f(x) = \frac{1}{3}x^3 - 4x$

Find the points of inflection (if any) in the following function: $f(x) = \frac{1}{3}x^3 - 4x$

Given the graph of y = f(x) below, circle the letter of the graph which best represents the graph of the derivative,

"A is a function of B" is written as:

A.
$$B = f(A)$$

B.
$$A = f(B)$$

The following are the graphs of the velocity in inches/second of two particles A and B at time t seconds

When is Particle A speeding up?

The following are the graphs of the velocity in inches/second of two particles A and B at time t seconds

Which particle has traveled the farthest after 4 seconds? Explain.

Is the following function continuous? Explain

Is the following function differentiable everywhere? Explain

What is $\lim_{x\to 2^-} f'(x)$

$$\int 2\sqrt{x}dx$$

$$\int 3\sin(x) - x^2 dx$$

$$\int_{1}^{2} \left(3x^2 - \frac{1}{x^2}\right) dx$$

$$\int_{2}^{3} \frac{3}{4x^2} dx$$

Find the following derivative

$$f(x) = 3x^2 \cos(x)$$

Find the following derivative

$$f(x) = \frac{2e^x}{x^3 + x}$$

Find the following derivative

$$f(x) = \sqrt{(x^3 - 2x + 5)}$$

This graph shows two minutes of a trip starting at (0, 4) and ending at (2, 0).

What is Eugene's average speed in mph for the trip? Is he riding a bike or walking or...?

This graph shows two minutes of a trip starting at (0, 4) and ending at (2, 0).

Explain what you would do to compute Eugene's speed at t = 1 minute. What calculus concept is this?

This graph shows two minutes of a trip starting at (0, 4) and ending at (2, 0).

Is Eugene going faster and faster, slower and slower or ...?

Sketch a graph that has the following properties:

- f(0) = 0
- $f'(x) > 0 \text{ for } x \le 0$
- f (x) has a jump discontinuity at x=2
- f(x) is not differentiable at x=3
- f'(x) = 0 at x=4

Let f(x) denote a function and f'(x) the derivative of that function.

If f(x) is increasing then f'(x) is

a. Increasing	b. Positive	c. Decreasing	d. Negative
e. Concave up	f. Zero	g. Concave down	h. Cannot be determined

Let f(x) denote a function and f'(x) the derivative of that function.

If f(x) is zero then f'(x) is

a. Increasing	b. Positive	c. Decreasing	d. Negative
e. Concave up	f. Zero	g. Concave down	h. Cannot be determined

Let f(x) denote a function and f'(x) the derivative of that function.

If f(x) is concave up then f'(x) is

a. Increasing	b. Positive	c. Decreasing	d. Negative
e. Concave up	f. Zero	g. Concave down	h. Cannot be determined

Let f(x) denote a function and f'(x) the derivative of that function.

If f'(x) is a local max then f(x) is

a. Increasing	b. Positive	c. Decreasing	d. Negative
e. Concave up	f. Zero	g. Concave down	h. Cannot be determined

Let f(x) denote a function and f'(x) the derivative of that function.

If f'(x) is negative then f(x) is

a. Increasing	b. Positive	c. Decreasing	d. Negative
e. Concave up	f. Zero	g. Concave down	h. Cannot be determined

What is the domain and range of the following function?

$$f(x) = \frac{4}{\sqrt{x^2 - 1}}$$