Final Review

Final Exam is Wednesday 4-5:50pm in MNB 104.

Question 1

What is the antiderivative of

$$
f(x)=-x^{2}+2 x ?
$$

Question 2

How fast is Eugene going in mph?
t
0
4
D
0
1

Question 3

What is the average rate of change from $x=2$ to $x=5$ of the function $y=2 x^{2}+1$?

Question 4

What is the instantaneous rate of change at $\mathrm{x}=3$ of $y=2 x^{2}+1$?

Question 5

Find the derivative. Write answer with positive exponents.

$$
f(x)=\frac{3}{x}
$$

Question 6

Find the derivative. Write answer with positive exponents.

$$
f(x)=5 \sqrt{x}
$$

Question 7

Find the derivative. Write answer with positive exponents.

$$
f(x)=\sqrt{3 x^{2}+2}
$$

Question 8

Find the derivative. You do not need to simplify.

$$
f(x)=(2 x+5)^{10}\left(x-3 e^{2 x}\right)
$$

Question 9

Find the derivative. You do not need to simplify.

$$
f(x)=\frac{5 \sin (x)-2 x^{3}}{2 x-1}
$$

Question 10

Evaluate. Write answer without negative exponents.

$\int 2 \sqrt{x} d x$

Question 11

Evaluate

$$
\int_{0}^{1}\left(x^{4}-\frac{1}{2} x\right) d x
$$

Question 12

Evaluate. Write answer without negative exponents.

$$
\int \frac{3}{4 x^{2}} d x
$$

Question 13

A is the flat line, B is the negatively sloped line and C is the curve. Describe the function / derivative relationship between the three functions.

Question 14

A ball is thrown into the air. The height of the ball in feet is given by the following function: $h(t)=$ $-16 t^{2}+44 t+12$.
How fast is the ball going at 3 seconds? Is it going up or down?

Question 15

A ball is thrown into the air. The height of the ball in feet is given by the following function: $h(t)=$ $-16 t^{2}+44 t+12$.
How fast is the ball going when it hits the ground?

Question 16

Express $\int_{-3}^{3} f(x) d x$ in terms of the values of A_{1}, A_{2}, A_{3}

Question 17

Express A_{1} as a definite integral

Question 18

Let $f(x)$ be the function graphed below. What is $\int_{0}^{2} f(x) d x$?

Question 19

Let $f(x)$ be the function graphed below. Order the following from least to greatest:

$$
\int_{0}^{1} f(x) d x \cdot \int_{0}^{3} f(x) d x, \int_{2}^{4} f(x) d x, \int_{7}^{8} f(x) d x
$$

Question 20

A ball is thrown into the air with an initial velocity of $60 \mathrm{ft} / \mathrm{sec}$ from a height of 30 ft .
Find the height function $h(t)$ and the velocity function $v(t)$ for the motion of the ball. Assume $a(t)=-32 \mathrm{ft} / \mathrm{sec}^{2}$.

Question 21

Find the coordinates (x, y) of the local maximum of the function. Use calculus, not your graphing calculator.
$f(x)=2 x^{3}-3 x^{2}-36 x$

Question 22

If the derivative of a graph is decreasing at a point $x=a$, then the original function at that point must be:
a. negative
b. concave down
c. a local min
d. a local max
e. cannot be determined

Question 23

If the derivative of a graph is zero at a point $x=a$, then the original function at that point must be:
a. negative
b. concave down
c. a local min
d. a local max
e. cannot be determined

