Mathematics Problem Solving Scoring Guide Unofficial (to be used as a support for students as they learn the official scoring guide). (based on the Plain Language Student Version updated by Marie Cramer and Cheryl Beaver 4/2014) | Process Dimensions | **6/5 | 4 | 3 | 2/1* | |--|--|---|--|---| | Making Sense of the Task Understand the ideas and change them into a math task WHAT? | thoroughly developed ideas that work. | The problem is changed into
a math task AND The math ideas can work | Parts of the problem are changed into a math task OR Some of the math ideas can work. | Only a small portion of the problem is understood. No understanding is shown. | | Representing and Solving the Task Choose the strategy that works best for this problem. Use pictures, charts, words, graphs and/or numbers. HOW? | used • The plan is clever and advanced. | A plan is used to solve the problem. AND The plan is complete. | The plan could solve some parts of the problem. OR The plan has a few missing parts | parts. • The plan cannot work. | | Communicating Reasoning Use the language of math (words, equations, graphs, | are very clear. • The explanations are insightful | The path through the work is clear. AND The work leads to a clearly identified answer. | The path leaves out important parts of the work. OR The path does not clearly lead to the answer. | The steps to complete the work are just started. No steps are shown. | | Accuracy The answer is IS IT RIGHT? | The solution is correct and extended to an additional question or math idea. The solution is correct and the problem is shown another way. A related question is asked and solved. | | The answer given may have a small error. OR Most of the work is correct and Most of the work is complete. | The answer given is not correct or not finished. The answer given doesn't match the work. No answer is given. | | Reflecting and Evaluating State and check your answer, and explain why it makes sense. CHECK? | • A different way is used to solve the problem. | The answer is written in a complete sentence and answers the question that was asked. AND A second look has been taken to completely check the work and shows why the answer makes sense. | asked. OR • Some, but not all of the work is | The check doesn't work. The check is barely started. The check is not there at all. | ^{**6} for a given dimension would have most of the list; 5 would have some of the list *2 for a given dimension would be inadequate in some of the list; while a 1 would be inadequate in most of the list