Mathematics Problem Solving Official Scoring Guide

Apply mathematics in a variety of settings. Build new mathematical knowledge through problem solving. Solve problems that arise in mathematics and in other contexts. Apply and adapt a variety of appropriate strategies to solve problems. Monitor and reflect on the process of mathematical problem solving.

Process Dimensions	**6/ 5	4	3	*2 / 1
Making Sense of the Task Interpret the concepts of the task and translate them into mathematics.	 The interpretation and/or translation of the task are thoroughly developed and/or enhanced through connections and/or extensions to other mathematical ideas or other contexts. 	The interpretation and translation of the task areadequately developed andadequately displayed.	The interpretation and/or translation of the task are • partially developed, and/or • partially displayed.	The interpretation and/or translation of the task are • underdeveloped, • sketchy, • using inappropriate concepts, • minimal, and/or • not evident.
Representing and Solving the Task Use models, pictures, diagrams, and/or symbols to represent and solve the task situation and select an effective strategy to solve the task.	 The strategy and representations used are elegant (insightful), complex, enhanced through comparisons to other representations and/or generalizations. 	The strategy that has been selected and applied and the representations used areeffective andcomplete.	The strategy that has been selected and applied and the representations used are • partially effective and/or • partially complete.	The strategy selected and representations used are • underdeveloped, • sketchy, • not useful, • minimal, • not evident, and/or • in conflict with the solution/outcome.
Communicating Reasoning Coherently communicate mathematical reasoning and clearly use mathematical language.	 The use of mathematical language and communication of the reasoning are elegant (insightful) and/or enhanced with graphics or examples to allow the reader to move easily from one thought to another. 	 The use of mathematical language and communication of the reasoning follow a clear and coherent path throughout the entire work sample and lead to a clearly identified solution/outcome. 	 The use of mathematical language and communication of the reasoning are partially displayed with significant gaps and/or do not clearly lead to a solution/outcome. 	The use of mathematical language and communication of the reasoning are • underdeveloped, • sketchy, • inappropriate, • minimal, and/or • not evident.
Accuracy Support the solution/outcome.	The solution/outcome is correct and enhanced by • extensions, • connections, • generalizations, and/or • asking new questions leading to new problems.	The solution/outcome given is • correct, • mathematically justified, and • supported by the work.	 The solution/outcome given is incorrect due to minor error(s), or a correct answer but work contains minor error(s) partially complete, and/or partially correct 	The solution/outcome given is • incorrect and/or • incomplete, or • correct, but • conflicts with the work, or • not supported by the work.
Reflecting and Evaluating State the solution/outcome in the context of the task. Defend the process, evaluate and interpret the reasonableness of the solution/outcome.	 Justifying the solution/outcome completely, the student reflection also includes reworking the task using a different method, evaluating the relative effectiveness and/or efficiency of different approaches taken, and/or providing evidence of considering other possible solution/outcomes and/or interpretations. 	The solution/outcome is stated within the context of the task, and the reflection justifies the solution/outcome completely by reviewing • the interpretation of the task • concepts, • strategies, • calculations, and • reasonableness.	The solution/outcome is not stated clearly within the context of the task, and/or the reflection only partially justifies the solution/outcome by reviewing • the task situation, • concepts, • strategies, • calculations, and/or • reasonableness.	The solution/outcome is not clearly identified and/or the justification is • underdeveloped, • sketchy, • ineffective, • minimal, • not evident, and/or • inappropriate.

**6 for a given dimension would have most attributes in the list; 5 would have some of those attributes.

*2 for a given dimension would be underdeveloped or sketchy, while a 1 would be minimal or nonexistent.