Math 344 Chapter 2 - Is it a group?

Directions: For each item, determine if the given set and operation form a group. If it is a group, prove it and determine if the group is abelian. If it is not a group, determine which properties fail and give counterexamples to each property that fails. If it is not a group, can you modify the set (e.g. throw out or add some elements) to make the set and operation a group, explain?

- **Definition of Group** Let G be a set and \circ a binary operation on G that assigns to each ordered pair (a, b) of elements of G an element in G denoted by $a \circ b$. We say that G is a **GROUP** under the operation \circ if the following three properties are satisfied:
 - 1. Associative. The operation is associative on the set $G: \forall a, b, c \in G, (a \circ b) \circ c = a \circ (b \circ c)$
 - 2. Identity. There is an element $e \in G$ (called the identity element) such that $a \circ e = e \circ a = a$ for all $a \in G$.
 - 3. Inverses. For each $a \in G$ there is an element $b \in G$ such that $a \circ b = b \circ a = e$ (b is called the inverse of a).
- Note that "hidden" in this definition is that the \circ is CLOSED on G. Don't forget to check that property.
- We say the group is **Abelian** if it is commutative: $a \circ b = b \circ a \quad \forall a, b \in G$.
- 1. Let the set be $Z_7^* = \{1, 2, 3, 4, 5, 6\}$ and the operation \times_7 (multiplication modulo 7). (Hint: Start by making a Cayley table.)

2. Let the set be $Z_9^* = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and the operation \times_9 . (Hint: Start by making a Cayley table.)

3. Let the set be all 2×2 matrices: $S = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid a, b, c, d \in \mathbb{R} \right\}$ with the operation of matrix multiplication.

4. For a fixed pair a and b, define $T_{a,b} : \mathbb{R} \to \mathbb{R}$ by $T_{a,b}(x) = ax + b$. Let the set be $G = \{T_{a,b} \mid a \in \mathbb{R}^*, b \in \mathbb{R}\}$ and let the operation be function composition.