Directions: For each item, determine if the given set and operation form a group. If it is a group, prove it and determine if the group is abelian. If it is not a group, determine which properties fail and give counterexamples to each property that fails. If it is not a group, can you modify the set (e.g. throw out or add some elements) to make the set and operation a group, explain?

- Definition of Group Let $G$ be a set and $\circ$ a binary operation on $G$ that assigns to each ordered pair $(a, b)$ of elements of $G$ an element in $G$ denoted by $a \circ b$. We say that $G$ is a GROUP under the operation $\circ$ if the following three properties are satisfied:

1. Associative. The operation is associative on the set $G: \forall a, b, c \in G,(a \circ b) \circ c=a \circ(b \circ c)$
2. Identity. There is an element $e \in G$ (called the identity element) such that $a \circ e=e \circ a=a$ for all $a \in G$.
3. Inverses. For each $a \in G$ there is an element $b \in G$ such that $a \circ b=b \circ a=e$ ( $b$ is called the inverse of $a$ ).

- Note that "hidden" in this definition is that the o is CLOSED on $G$. Don't forget to check that property.
- We say the group is Abelian if it is commutative: $a \circ b=b \circ a \forall a, b \in G$.

1. Let the set be $Z_{7}^{*}=\{1,2,3,4,5,6\}$ and the operation $\times_{7}$ (multiplication modulo 7). (Hint: Start by making a Cayley table.)
2. Let the set be $Z_{9}^{*}=\{1,2,3,4,5,6,7,8\}$ and the operation $\times_{9}$. (Hint: Start by making a Cayley table.)
3. Let the set be all $2 \times 2$ matrices: $S=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \right\rvert\, a, b, c, d \in \mathbb{R}\right\}$ with the operation of matrix multiplication.
4. For a fixed pair $a$ and $b$, define $T_{a, b}: \mathbb{R} \rightarrow \mathbb{R}$ by $T_{a, b}(x)=a x+b$. Let the set be $G=\left\{T_{a, b} \mid a \in \mathbb{R}^{*}, b \in\right.$ $\mathbb{R}\}$ and let the operation be function composition.
