Exam 2 is an in class exam to be given on Monday, March 11th.

- Exam 2 covers Chapters 5 7 and the last part of Chapter 4 (Thm. 4.4 and its Corollary).
- You may have one sheet of notes, one side only (regular size paper). You may have no more than 3 worked out problems or theorem proofs on your note sheet. You will turn in your sheet of notes with your exam.
- If you need it, I will provide a copy of the back cover of your boook (the Cayley tables for D_4 and D_3) or of the elements of A_4 .
- Suggestions for study:
 - Review the theorems and proofs from the class and book. Work out the proofs on your own, then check with the book or notes.
 - Redo (not just look at) assigned homework problems.
 - Do additional problems from the text.
 - Work out the practice problems below. Make up a new sheet of practice problems and trade with a friend.
 - Make a sheet of notes.
 - Practice problems in a timed environment. Redo problems until you can do them quickly without looking at notes. This better simulates the exam environment.
- **Disclaimer:** The set of problems below is not meant to be an exhaustive list of the type of problems that may be on the exam, it is simply for your practice.
- 1. (a) TRUE FALSE S_n is non-Abelian for all $n \ge 3$.
 - (b) TRUE FALSE If a is a permutation that is an m-cycle and b is a permutation that is an n-cycle, then |ab| = lcm(m, n).
 - (c) TRUE FALSE If a group has an element of order 10, then the number of elements of order 10 is divisible by 4.
 - (d) TRUE FALSE A 1-1 mapping from a set to itself is onto.
 - (e) TRUE FALSE If a finite group has order n then the group contains a subgroup of order d for every divisor d of n.
 - (f) TRUE FALSE If H is a subgroup of G and a and b belong to G, then aH and Hb are either identical or disjoint.
 - (g) TRUE FALSE If H is a subgroup of a finite group G, then the number of distinct left cosets of H in G divides |G|.
 - (h) TRUE FALSE A group can be isomorphic to a proper subgroup of itself.
 - (i) TRUE FALSE Two groups isomorphic to the same group are isomorphic to each other.

- 2. Give an example of a group that has subgroups of orders 1, 2, 3, 4, 5, and 6 but does not have a subgroup of order 7 or 8.
- 3. Find the order of the permutation $\alpha = (124)(2345)$. Is α even or odd? What is α^{16} (don't compute it out, use some theorems)
- 4. In the group S_n , let $\alpha = (12)(123)(1234)(12345)...(123...n)$. If n = 99, determine whether α is even or odd.
- 5. Suppose that ϕ is an automorphism of Z_9 (isomorphism of Z_9 to itself) and $\phi(4) = 1$. Determine a formula for ϕ .
- 6. Find all the left cosets of $\{1, 11\}$ in U(20).
- 7. Given that |a| = 20, find all left cosets of $\langle a^{12} \rangle$ in $\langle a \rangle$.
- 8. Let p be a prime and let n be a positive integer. How many subgroups does Z_{p^n} have (including the trivial subgroup and the group itself)?