Lemma: Properties of Cosets Let H be a subgroup of G, and let $a, b \in G$. Then,

- a ∈ aH,
 aH = H if and only if a ∈ H,
 aH = bH if and only if a ∈ bH,
 aH = bH or aH ∩ bH = Ø,
 aH = bH if and only if a⁻¹b ∈ H,
 |aH| = |bH|,
 aH = Ha if and only if H = aHa⁻¹,
- 8. aH is a subgroup of G if and only if $a \in H$.

Lagrange's Theorem If G is a finite group and H is a subgroup of G, then |H| divides |G|. Moreover, the number of distinct left (right) cosets of H in G is |G|/|H|.

We define the *index* of H in G to be the number of left (right) cosets of H in G. We denote the index by |G:H|. A direct consequence of Legrange's theorem is a formula for this as recorded by Corollary 1:

Corollary 1 If G is a finite group and H is a subgroup of G, then |G:H| = |G|/|H|.

1. The following corollary is often our most used application of Lagrange's Theorem. Prove it please: (Hint: Remember each element forms a cyclic subgroup. hmm. Which Theorem was that? How was the order related to the order of the element?Which Theorem was that?)

Corollary 2: In a finite group, the order of each element divides the order of the group.

2. **NOTE:** The converse of this is false! Just because a number divides the order of a group does not guarantee that there exists an element of that order. Prove this by finding a group of order n with divisor k of n, but no element of order k. (Hint: Examples abound in Chapter 5.)

3. In the past the following problem was a little complicated to prove, but Lagrange's theorem and its corollary make it easy: Prove that a group of order 5 is cyclic.

 Prove the more general version of this problem which is recorded as a Corollary to Lagrange's Theorem: Corollary 3 A group of prime order is cyclic. 5. Prove the following Corollaries:

Corollary 4: Let G be a finite group, and let $a \in G$. Then $a^{|G|} = e$.(Hint: Use Cor. 2.)

Corollary 5: Fermat's Little Theorem For every integer a and every prime p,

 $a^p = a \pmod{p}.$

Note: This is pretty easy using Cor. 4, but there are 2 cases to consider: 1) gcd(a, p) = 1, and 2) $gcd(a, p) \neq 1$. Note the second case implies $p \mid a$. Do you see why?

6. Use the ideas in the previous corollaries to quickly find $7^{26} \pmod{15}$ (do not use your calculator program to do it, but you can use it to check if you're correct).

7. Find the last digit of 97^{12345} . (Hint: How does thinking modulo 10 help?)

8. Let a and b be non-identity elements of different orders in a group of order 155. Prove that the only subgroup of G that contains both a and b is G itself.