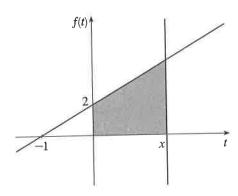
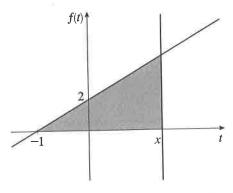

Group Work 1, Section 5.2 The Area Function

Recall that we can use the notation $\int_a^b f(t) dt$ to denote the area under the curve f(t) between t = a and t = b.

1. Consider the constant function f(t) = 4.


(a) Using geometry, compute $\int_{1}^{2} f(t) dt$.

(b) Similarly compute $\int_{1}^{3}f\left(t\right)dt$ and $\int_{1}^{4}f\left(t\right)dt$.

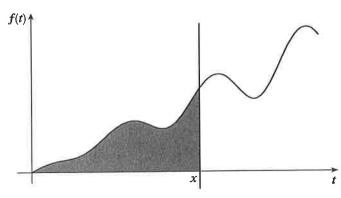

(c) Using your answers to parts (a) and (b) as a guide, compute $\int_{1}^{x} f(t) dt$ for any $x \geq 1$.

(d) We now define the area function $A(x) = \int_1^x f(t) dt$, $1 \le x \le 4$. What is A(2)? A(2.5)? A(1)? Write a general formula for A(x).

2. Let f(t) = 2t + 2 for all t.

- (a) Using geometry, compute $\int_{0}^{2} f(t) dt$.
- (b) Similarly, compute $\int_{0}^{4} f(t) dt$.
- (c) Using your answers to parts (a) and (b) as a guide, compute $\int_0^x f(t) dt$ for any $x \ge 0$.
- (d) We now define another area function $B(x) = \int_0^x f(t) dt$. What is B(2)? B(4)? B(0)? Write a general formula for B(x).
- (e) We will now define a third area function $C\left(x\right)=\int_{-1}^{x}f\left(t\right)dt$ for any $x\geq-1$, as pictured below:

What is C (2)? C (4)? C (-1)? Write a general formula for C (x).


3. The Punchline:

We have now computed three different area functions. Fill in the blanks:

$A\left(x\right) =% {\displaystyle\int\limits_{x}^{x}} \left\{ A\left(x\right) \right\} dx$	A'(x) =
$B\left(x\right) =% {\displaystyle\int\limits_{x}^{x}} \left\{ \left\{ x\right\} \left[x\right] $	B'(x) =
$C\left(x\right) =% {\displaystyle\int\limits_{x}^{x}} {\int\limits_{x}^{x}} {\int\limits_$	C'(x) =

You should notice a very interesting fact about the derivatives of the area functions — a fundamentally beautiful property. What is it?

4. We are going to define one final function, $D\left(x\right)=\int_{0}^{x}0.2t\sin\left(\cos\left(\sin t\right)\right)dt$.

Don't worry about trying to find a simple formula for D(x). But, using our amazing fact, fill in the last blank:

$$D'(x) =$$

Not only is the fact that we've discovered a surprising one; as we shall see in Section 5.4, it is also extremely useful.