You are required to pass a Factors and Multiples Skills Test in Mth212. There are 22 problems. You must get at least 18 of them correct to pass the Factors and Multiples Skills Test. You have 30 minutes in which to do this. YOU MAY NOT USE A CALCULATOR. You may use as much scratch paper as you wish.

The test covers factoring whole numbers into primes, finding the Greatest Common Factor (GCF) of sets of whole numbers, and finding the Least Common Multiple (LCM) of sets of whole numbers. If you know the tests for divisibility by $2,3,4,5$ and 10, the Factors and Multiples Skills Test will be considerably simpler.

A small amount of time will be provided in class to prepare for the Factors and Multiples Skills Test. However, most of your preparation was done in Mth211. You will receive a Practice Factors and Multiples Skills Test and you should do this practice several times until you are extremely comfortable with the problems.

One-half hour of class time during the first or second week of the term will be used to administer the Factors and Multiples Skills Test to your class. (See your class schedule.) If you pass it at that time you will receive 10 points of extra credit towards your Mth212 grade. If you do not pass it you will need to retake it. In order to do a retake you must call Sharyne Ryals, the math department office manager, at 503-838-8465 to make an appointment. There will be NO more class time spent on the Factors and Multiples Skills Test in Mth212.

If you pass the test after the initial class offering but before the end of the fourth week of the term you will receive 5 points extra credit towards your grade in Mth212.

YOU MUST PASS THE FACTORS AND MULTIPLES SKILLS TEST ON OR BEFORE FRIDAY OF DEAD WEEK. IF YOU DO NOT, YOU WILL NEED TO RETAKE MTH212.

If you retake the Factors and Multiples Skills Test and do not pass it, you should get some help! Immediately! You can see your instructor, use the Tutoring Center, ask another (more skilled) student, and/ or review your Mth211 work from Chapter Four in the text.

After three retakes of the Factors and Multiples Skills Test, if you have still not passed, Sharyne will give you a Retake Permission Slip. You are required to take this slip to your instructor before you can proceed. Your instructor will provide you with additional, individual assistance and will then write the number of times you can continue retaking the Factors and Multiples Skills Test on the Retake Permission Slip. You must present the completed Retake Permission Slip to Sharyne before further retesting can occur. This process will repeat until you have passed the Factors and Multiples Skills Test or until Dead Week ends, whichever comes first.

If you have any questions now is the time to ask! You are encouraged to contact your instructor:

Email: @wou.edu
Office Phone: 503- $\overline{8} \overline{3} 8-8$
DO NOT DELAY PREPARATION FOR THE FACTORS AND MULTIPLES SKILLS TEST!!!
PASS IT THE FIRST TIME AND WIN BIG!

PRACTICE FACTORS \& MULTIPLES TEST \#1

Passing criterion is AT LEAST 18 correct in ONE-HALF HOUR.
You may NOT use a CALCULATOR.
I. Rewrite as a PRODUCT OF PRIMES. If the given number is prime, write 'PRIME.'

1. $213=$ \qquad
2. $139=$ \qquad 3. $377=$ \qquad
3. $272=$ \qquad
4. $98=$ \qquad
5. $342=$ \qquad
6. $131=$ \qquad
7. $609=$ \qquad
8. $412=$ \qquad
II. Find the GREATEST COMMON FACTOR of the following sets of numbers:
9. $\operatorname{GCF}(45,60)=$ \qquad
10. $\operatorname{GCF}(68,102,136)=$ \qquad
11. $\operatorname{GCF}(106,203)=$ \qquad
12. $\operatorname{GCF}(90,60)=$ \qquad
13. $\operatorname{GCF}(201,67)=$ \qquad

III. TRUE or FALSE. Circle your answer.

T \quad F 1. 16779 is a multiple of 47.
$\mathbf{T} \quad \mathbf{F} \quad 2.59$ is a factor of 119.
T $\quad \mathbf{F} \quad 3.750$ is a multiple of 25.
IV. Find the LEAST COMMON MULTIPLE of the following sets of numbers:

1. $\operatorname{LCM}(45,60)=$ \qquad
2. $\operatorname{LCM}(91,117)=$ \qquad
3. $\operatorname{LCM}(10,15,20)=$ \qquad 4. $\operatorname{LCM}(121,77)=$ \qquad
4. $\operatorname{LCM}(80,60)=$ \qquad

ANSWER KEY

I. PRIMES \& COMPOSITES

1. 3×71
2. PRIME
3. 13×29
4. $2 \times 2 \times 2 \times 2 \times 17$
5. $2 \times 7 \times 7$
6. $2 \times 3 \times 3 \times 19$
7. PRIME
8. $3 \times 7 \times 29$
9. $2 \times 2 \times 103$
II. GREATEST COMMON FACTOR
10. 3×5 or 15
11. 2×17 or 34
12. 1
13. $2 \times 3 \times 5$ or 30
14. 67
III. TRUE OR FALSE
15. True 2. False 3. True
IV. LEAST COMMON MULTIPLE
16. $2 \times 2 \times 3 \times 3 \times 5$ or 180
17. $3 \times 3 \times 7 \times 13$ or 819
18. $2 \times 2 \times 3 \times 5$ or 60
19. $7 \times 11 \times 11$ or 847
20. $2 \times 2 \times 2 \times 2 \times 3 \times 5$ or 240

Fraction Terminology
Fraction
Numerator
Denominator
Part to Whole Fraction Models (Examples A, B, C)

Division Concept Fraction Model

Ratio Concept Fraction Model

Equality of Fractions

Fundamental Rule for Equality of Fractions

Simplifying Fractions

Lowest Terms

Common Denominators (least common denominator)

Rules of Signs for Fractions

Test for Equality of Fractions

Inequality of Fractions

Test for Inequality of Fractions

Density of Fractions

Mixed Number and Improper Fractions

Models for Adding Fractions	
Term: Addend	Term: Sum
Like denominators	Number line

Unlike denominators

Paper and Pencil Algorithm (Rule) for Adding Fractions

Improper Fractions / Mixed Number solutions

Models for Subtracting Fractions
Term: Difference

Take Away	Missing Addend
Adding Up	Unlike denominators
Paper and Pencil Algorithm (Rule) for Subtracting Fractions	

Models for Multiplying Fractions	Term: Product
Term: Factor	
Whole \times Fraction; repeated addition	
Paper and Pencil Algorithm \times Whole	

Fraction \times Fraction

Paper and Pencil Algorithm (Rule)

Models for Dividing Fractions

Term: Divisor	Term: Quotient

Repeated Subtraction (Measurement)

Paper and Pencil Algorithm (Rule): Invert and Multiply

Number Properties for Fractions	Closure: Multiplication
Closure: Addition and Subtraction	Identity: Multiplication
Identity: Addition	Associative: Addition
Commutative: Addition	
Commutative: Multiplication	
Distributive: Multiplication over Addition	
Inverses: Addition	
Mental Calculations for Fractions	Sultiplication
Compatible Numbers	
Rounding	
Equal Differences or Add-Up	Cqual Quotients

Decimals		Term: Decimal Places
Term: Decimal Points	Term Decimal	
Reading and Writing Decimals		
Models for Decimals: Decimal Squares		
Models for Decimals: Place Value Table		
Models for Decimals: Number Lines		
Equality of Decimals		
Rational Numbers		
Term: Rational Numbers		
Pacer		

Denominator can be converted to a power of ten

When is a rational number a terminating decimal?

Rounding Decimals

Adding and Subtracting Decimals

Models for adding and subtracting decimals

Paper and Pencil Algorithm (connected to model)

Multiplying Decimals
Models for multiplying decimals

Paper and Pencil Algorithm (connected to model)

Partial Products

Dividing Decimals

Models for dividing decimals

Paper and Pencil Algorithm (connected to model)

Terminating, Repeating and Non-repeating Decimals
Terminating

Repeating

Non-repeating

EXAMPLES:

§6.3 KEY IDEAS, page 1 of 2

Ratios \& Proportions

Ratio: a : $b=a / b$

Examples

Proportion: $a / b=c / d$

Examples

Percents
Percents and Decimal Squares

Percents as decimals

Percents

Given the whole and the percent, find the part

Given the whole and the part, find the percent

Given the percent and the part, find the whole.

Scientific Notation

General Ideas

NOTES:

Pythagorean Theorem
Theorem
Examples
Pythagorean Triplets
Root Rules
Real Numbers
Venn Diagram

Number Properties for Real Numbers	Closure: Multiplication
Closure: Addition	Identity: Multiplication
Identity: Addition	Associative: Addition
Commutative: Addition	Associative: Multiplication
Commutative: Multiplication	Inverses: Multiplication
Inverses: Addition	
Distributive: Multiplication over Addition	Completeness Property

Pythagorean Theorem

Examples

Bar Graph Key Features, Graphing Techniques \& Uses

Pie Graph Key Features, Graphing Techniques \& Uses

Pie Graph of Teacher Responses to
Changing Hours of School Day

Pictograph Key Features, Graphing Techniques \& Uses

Line Plot Key Features, Graphing Techniques \& Uses

Homework Scores		
Stem		Leaf
1	9	
2	2788	
3	022447779	
4	01335677889	
5	00	

Frequency Tables

Histogram Key Features, Graphing Techniques \& Uses

Line Graph Key Features, Graphing Techniques \& Uses
U.S. Population Growth

Scatter Plot Key Features, Graphing Techniques \& Uses

Definition: Mean

Definition: Median—Odd number of measurements

Definition: Median—Even number of measurements

Definition Mode

EXAMPLES		
Data Set One		
$\{1,2,3,4,5,6\}$		
Mean	Median	Mode
Data Set Two		
$\{1,2,2,4,4,5,6\}$		
Mean	Median	Mode
Data Set Three		
$\{1,4,8,13,24,36\}$		
Mean	Median	Mode
Data Set Four		
$\{1,1,1,1,4,4,64\}$		
Mean	Median	Mode
Quartiles Lower Quartile (Q1)		
Median (Q2)		
Upper Quartile (Q3)		

Box and Whiskers

EXAMPLES			
Data Set One			
$\{1,2,3,4,5,6\}$			
Q1= Lower	Q2 = Median	Q3 = Upper	Box and Whiskers
Data Set Two			
$\{1,2,2,4,4,5,6\}$			
Q1= Lower	Q2 = Median	Q3 = Upper	Box and Whiskers
Data Set Three			
$\{1,4,8,13,24,36\}$			
Q1= Lower	Q2 = Median	Q3 = Upper	Box and Whiskers
Data Set Four			
Q1= Lower	Q2 = Median	Q3 = Upper	Box and Whiskers
Interquartile Range			
Outliers			
Measures of Variability			
Data Set Range			

Standard Deviation (from calculator-use $\boldsymbol{\sigma x}$ not $S x$)

Sampling

Sample

Population

Random Sample

Stratified Sampling

Distributions

(Tail) Skewed to the Right (positively skewed)

If a housing market was Skewed to the Right; what would this mean in terms of housing prices?

How would the mean and median be related?
(Tail) Skewed to the Left (negatively skewed)

If a housing market was Skewed to the Left; what would this mean in terms of housing prices?

How would the mean and median be related?

If a housing market was Symmetric; what would this mean in terms of housing prices?

How would the mean and median be related?

Normal Distributions

Normal Curve \& 68\%-95\%-99.7\% rule

Example E

Percentiles

Definition: pth percentile

Example G

Z-Scores

Definition: Z-Score

Example I

Definition: Rare Event

Dice Rolling Simulation

SUM OF TWO DICE DISTRIBUTION CHART

2	3	4	5	6	7	8	9	10	11	12

Experiment

Sample Space of an Experiment

Probability of an outcome in an experiment (Experimental Probability)

Theoretical Probability of an Outcome if there are n equally likely outcomes

Example

Probability of Events

Example

Sample Space, S

Probability of an Event E
$\mathrm{P}(\mathrm{E})=\frac{\# E}{\# S}$

Example E

$0 \leq P(E) \leq 1$

Complimentary Events

Definition / Description

Example

Odds

Definition / Description

Single-stage Experiment

Multistage Experiment

Probability Trees

Examples

Tree diagrams and products of probabilities

Example C—how to simply your tree diagram

Independent Events
Probability of Independent Events (A and B)—Multiplication Property

Other ideas
Dependent Events
Example G
Probability of Dependent Events (A and B)

Complementary Events

Example H

Expected Value

Example J

Permutations and Combinations
Example M (tile arrangements)
n factorial!

Example N

Permutation Theorem

Example O

Example P (sets of tiles)

Order matters vs. order does not matter

Combination Theorem

Example Q

Examples

