Fall Term 2015, EXS Courses, and Summer Opportunities

Registration for Fall Term 2015 is upon us, but don’t overlook ways to get ahead during Summer Term…. Consider things such as:
– take PE 444 Adapted Physical Activity, off campus on selected Fridays and fully practical-based.
– find a Psychology course or Human Bio. Minor required course you might still need.
– connect with a PT Clinic and arrange for some observational hours. Remember most successful DPT program applicants have many times the common minimum of 100 hours.

And as to Fall Term,
– the new course prefix EXS is now in place – most courses which formerly carried the PE prefix as of Fall 2015 can be found under Exercise Science with the EXS prefix (activity courses still will use PE).
– consider CH 150 Chem Prep if you are at a place to begin your Chemistry sequence. You may wish to jump right into CH 221 for Fall, if your high school chemistry and math skills are strong. Visit the Chemisty department for guidance if unsure which course would be best.

Have a good final few weeks of Spring Term!


DPT Program Virtual Fair & PTCAS Update

The  PTCAS website has some valuable new and updated features for students exploring careers in Physical Therapy and Doctor of Physical Therapy (DPT) graduate programs in specific – such as the new Google map of program locations here:  DPT Graduate Program Map

ALSO – There is an opportunity to visit virtually with representatives of DPT Programs from all over the country by registering for the

Physical Therapist (DPT) Education Virtual Fair

which will go live on April 28th and 29th.  It is free for Pre-Physical Therapy students, although you must pre-register.  Follow the link above for more information.  There is no substitute for speaking directly with representatives of graduate physical therapy licensing programs to fullyy understand how best to prepare for graduate DPT licensing programs, and what different programs specifically look for in their applicants .  Take advantage of this great opportunity!


Spring Term, 2015

A few programming notes as Spring Term begins –

  • A minor scheduling change has resulted in an additional section of PE 371 Kinesiology, which I will be instructing, with PE 484 Advanced Biomechanics being moved to a Fall Term, 2015 offering.  Any student who was in need of that specific Advanced Area course for completion of their degree should visit with their academic advisor for options.
  • Any Exercise Science majors planning on completing their Internship experience either Summer 2015 or Fall 2015 should contact and visit with our Internship Coordinator, Janet Roberts, robertsjl@wou.edu,  EARLY this term.
  • An finally, for those of you with health care career aspirations, consider attending the Health Professions Career Fair on the campus of Oregon State University in Corvallis, on April 21(a Tuesday).  If that day conflicts with your schedule, a similar event with nearly all the same programs will be at UO in Eugene on April 20, and at PSU in Portland on April 22.

Have a great Spring Term!

New Chemistry pre-requisite

For those of you making plans for the WOU CHEM 221, 222, 223 sequence sometime in the near future (a prerequisite year of General Chemistry required by nearly all graduate Physical Therapy programs), our Chemistry department has developed a new prerequisite course, CHEM 150 – Chem Prep, designed specifically to ensure your success in CHEM 221.   Typically offered Fall Term, be on the lookout for the potential addition of a section for this coming Spring Term, 2015.  For more information on this or questions you may have on moving successfully through your PT program prerequisites – see my office hours for this term and stop by for a visit!

PTCAS Applicant Data Report for 2013-14

The Physical Therapy Centralized Application Service (PTCAS) has released their in-depth report covering the 2013-14 application cycle.  Although the primary audience for this report is the DPT and pre-PT programs preparing tomorrow’s Physical Therapists, students preparing to enter this field can learn much about the academic profile of successful applicanst to DPT program from sections of this report.  Have a look here:  PTCAS Applicant Data Report for 2013-14

Winter Term, 2015

Welcome Back to all of my students in PE 483W Biomechanics this term, and to my advisees. Please note that since we last may have met, my OFFICE HAS MOVED! I’m now located in the Education Building, ED 164 (downstairs, on the side facing the Library).
Winter Term Office Hours: 8:00-10:30am, Mondays and Wednesdays

On occasion I hold office hours in the Library, or in the HWC (typically in the Exercise Science Lab), depending on what students are working on and where I can be of most help. Have a great start to the term,


Lecture 2 with Dr. Pauling

– Dr. Pauling notes in his introductory comments that the covalent bond, that simple line connecting two atoms in chemical formulas, is on of the greatest constructs, perhaps the greatest construct of the human mind… and  impactful statement from on such as Linus Pauling.  Is it perhaps the leap that was made in theorizing what must be at a physical level orders of magnitude smaller that that which the human eye can hope to see?  Fostering understanding of concepts that cannot be directly observed – also the intent of my exercise science courses.
– An insightful comment on Pauling’s famous ball-and-stick models: “I may mention that these ball and stick models are quite illuminating but they do not give a really correct idea of the shape of the molecule.” found in Part 1 of Lecture 2 (found here: http://scarc.library.oregonstate.edu/coll/pauling/bond/video/1957v.1-10.html
then he further points out the more accurate nature of the representation using a space-filling model, made of atoms with overlapping radii, representative of their true interaction distances, which also allows him to demonstrate interactions among differing element. If find myself, as the lecture attendee, slipping in attention during extended talk, but snapping back into focus on the topic at hand when Dr. Pauling begins to interact with physical structures (the models, the chalkboard, etc.)
– I like Dr. Paulings use of ‘teasers’, applications of chemicals elements or molecules that are not fully understoon. Both here in Parts 3 and 4 deal with biomechemistry and ‘strained’ bonds, or bonds that do not conform to the tetrahedral degree. The first deals with gases that produce general anesthesia in humans, the second a gas that ripens oranges! He doesn’t dwell, but draws the student in with his own fascination and curiosity.
– Perhaps a key element to learn from this lecture is the value of a fundamental, governing principle to which one always resturns – here that seems to be the tetrahedral structure of the carbon atom. What are my fundamental, governing principles in Biomechanics?

The Guest Lecture – a few minutes with Dr. Mary Jo Nye

–  Fast forward from 1957 to 2010, and a brief ‘guest lecture’ by science historian Dr. Mary Jo Nye on the Models of Linus Pauling.  My previous comments about the value of multiple representations of concepts and information and the value that brings to the student in the learning environment were obviously an extension of Linus Pauling’s own attempt to master complex, as yet undescribed phenomena.  In this short, 7 and one half minute conversation, one experiences the wealth of representational methods, many pioneered by Linus Pauling: stick-ball models from rudimentary (tinker toys) to that turned out in the machine shop, 3-d paper models reminiscent of a school craft project, to stacks of mini cannonballs, from graphic representation with letters and connecting symbols on the page to x-ray diffraction photos; from simple pencil sketches in the notebook to artist-rendered drawings in the textbook, not forgetting the line formula with letters, numbers, subscripts and superscripts.  The languages available to the chemist are one dimensional, two-dimensional and three-dimensional; when one dives into quantum mechanics and mathematical representations capturing the dynamic motion that Dr. Nye points out is not present in the static forms, a fourth dimension of time is added.  A comment from Dr. Nye which is perhaps enlightening for the educator, she notes that the stick-ball representations – the ball ‘molecules’ linked together by the stick ‘bonds’, “can’t be correct”, (noting minimally that it is a static representation of a dynamic situation), yet is an effective way to introduce that complex world of chemical structure to students.  My mind makes a connection to the description of learning by neuroscientist James Zull:  that initial stick-ball model turns the non-branching neuron of the student into one with branches and connections; further exposure to other forms of representation then allow the branched neuron to both branch with greater complexity, as well as connect with other neurons.  Dr. Nye is describing this process in one of the brightest minds of the past 100 years, when she so eloquently describes Linus Pauling’s incredible memory for complex chemical reactions and processes, and his mixing of physical, graphical and mathematical models to build, test, question, and revise the concept with which he was struggling.  Dr. Nye describes a trait of ‘not all chemists, but of model builders’, of connecting tactile awareness to that which is in the formula, in the x-ray diffraction, in the equation.  What our students so often miss out on is this tendency to tinker with things, with ideas, with movements.  They need a guidance to foster that tendency, and they need the time to tinker.

In the Lecture Hall with Dr. Pauling – Day 3

– Dr. Pauling uses drawings to illustrate and discuss relationships among element adjacent to each other on the periodic table, with particular emphasis on electron orbital shells presented earlier.  Once again, a methodology most likely not possible today is used – the ‘drawings’ are on approx. 24 x 23in cards, with hangers to fit over the top of the chalkboard, with the concluding full row of the periodic table encompassing the breadth of two full chalkboards, and the entire front of the classroom behind the podium.  We hope students make connections – connections may perhaps be made more readily when the information as presented, is still present (Dr. Pauling then moves on to using a large stick-and-ball model, but the previously presented orbital shell comparison remains in place).
– The previously noted approach also lends itself to inherently fostering one of the most important components for learning – processing time.  I have always felt this was one advantage of writing key notes on the board, as opposed to pre-preparing them in a powerpoint slide.  I often reference my Calculus teacher from my freshman year at Linfield – Dr. Roger Dell, who was an exceptional artist with a piece of chalk and the blackboard.  The time that the student was allowed to process new information and concepts while two and three dimensional shapes emerged from Dr. Dell’s stick of chalk; the dynamic emergence of the drawing itself, is a mental processing step that is too often missed in the rapid fire slideshow employed by so many of us today.  I also fondly recall my second semester Calculus instructor, Dr. Win Dolan.  We knew Dr. Dolan was retired, but it was only much later that I learned he was 72 or 73 at the time.  Perhaps I am reminded of Dr. Dolan’s approach, as I listen to Dr. Pauling’s steady, slow, measured pace of lecturing.  Dr. Dolan was also an elegant lecture, with a speaking demeanor that once again fostered time for reflection and mental processing.  To see what I mean, have a listen to Dr. Dolan’s LInfield College commencement speech, delivered at age 99 in 2008.