ES322 Geomorphology Fall 2014 Final Study Guide

NOTE: The final exam is scheduled to start 12:00 PM on Tuesday Dec. 9.

Study Tips

- complete all labs and worksheets before exam
- use study guide in combination with notes and online powerpoint slide shows
- go back through the in class / lab exercises, make sure you can work the math / units; review map skills
- spend a couple days studying, the exam will be short answer / essay and there is much material.
- don't wait until the last minute!
- carefully go through the notes, some of the material we briefly discussed, but did not spend much time on in class... but the notes will give you the detail.

Exam Procedures

- (1) Final exam will be 125 points.
- (2) Part 1 Closed book, short answer/essay questions, focusing mainly on material since mid-term, but we have been building a cumulative vocabulary throughout the term. See key-word/review recommendations below.
- (3) Part 2 Open Book- lab-style quantitative questions, map questions, air photo questions, identification of fluvial, glacial landforms, identification of basic climatic / tectonic / geomorphic features; association of landforms with processes, association of landform photos with processes and concepts. Bring a calculator.

Keywords and Concepts Since the Mid-Term

Tectonic Geomorphology convergent boundary divergent boundary transform boundary mountain front anticline syncline

mountain building normal fault reverse fault strike slip fault plunging fold non-plunging fold

joints
dip
strike
dip slope
scarp slope
anti-dip slope

lithologic resistance to erosion sandstone-shale example

differential erosion hog back / cuesta resistant bedrock non-resistant bedrock law of v-shape patterns joint-fault erosion

lineaments active mountain front inactive mountain front mountain front sinuosity soils-fault relations Steens Mtn example

fault scarp butte / mesa cap rock

fault scarp degradation zig-zag mountains differential erosion

Aerial Photographs

air photo

electromagnetic spectrum

wavelength frequency speed of light reflected light stereo pair stereoscope

altitude / camera height

focal length photo scale

relief displacement principal point vertical exaggeration

orthophoto

texture, color, patterns, shading

photo interpretation

Coastal Process and Neotectonics

coast
beach
tectonics
waves
tides
gravity
pocket beach
marine terrace
wave-cut notch
wave-cut terrace
emergent coasts
submergent coasts
depositional coasts

headlands sea cliff sea stacks sea arches wave-cut platform

uplifted coasts
sea level change
global sea level rise /fall
global climate cycles
interglacial / glacial
PNW tectonic setting
convergent
subductions
neotectonic uplift
relative sea level change

uplift vs. SL change subsidence vs. SL

change global warming density currents

Oso Landslide Seminar

Debris slump
Debris fall
Debris slide
Debris flow
Glacio-fluvial deposits
Oso Washington
Emergency Response
D-Claw Model
Lidar
Landslide volume

Erosion rates Runout distance Fluid flow Liquefied flow Hazard model H/L Ratio Transport velocity

Fluvial	rain splash	stream rating curve
	sheet erosion	gauging station
Hydrologic Cycle /	rill erosion	magnitude-frequency
Water Budget	gully erosion	relations
Discharge	channel flow	velocity-depth relations
precipitation	stream erosion	viscosity
infiltration	shear	laminar flow
intensity	abrasion (tools)	turbulent flow
recurrence interval	corrosion	slope-discarge relations
width/depth ratio	Q=VA	stream power calculation
channel area	V=L/T	depth-velocity relations
wetted perimeter	A=wd	width-velocity relations
hydraulic radius	P=2d+w	sediment load
gradient	velocity profiles	stream competence
interception	discharge calculations	stream capacity
evapotranspiration	manning equation	vegetative effect on sed. load
soil porosity	R.I. / probability	dissolved load
soil permeability	energy expenditure	
runoff	roughness coefficient	
suspended load	braid gravel bars	
bed load	river base level	Glacial Processes and
saltation	local base level	Landforms
flotation load	regional base level	Glacier
bernoulli principle	graded profile	Snowfield
"fluid lift force"	Fluvial System Factors	Snow-firn-ice
turbulent flow	slope	Ice stratification/accumulation
laminar flow	base level	Ice deformation
channel morphology	climate	Plastic vs. brittle
straight	discharge	Plastic = internal flow
meandering	velocity	Brittle = crevasses/fracture
braided	sed. supply	Ice Flow Mechanisms
width/depth ratio vs. channel	sed. load	Basal sliding
bank grain size relations	aggradation conditions	Internal deformation
gradient vs. stream type	degradation conditions	Plastic deformation
sed. load vs. stream type	river entrenchment	Crevassing
meanders	knickpoints	Glacial surging
point bar	knickpoint retreat	Glacial meltwater
cut bank	terraces / incision	Ice-water mixture
levee	drainage patterns	Glaciers as aquifers
floodplain	dendritic - flat rocks	Temperate glaciers = wet
terrace	trellis - folded rocks	Polar glaciers = dry
oxbow lake	rectangular - fractured rocks	Alpine vs. Continental glaciers
oxbow cutoff process	radial - volcano	Glacial advance
pool-riffle sequences	tectonic uplift vs. climate	Glacial retreat
overbank sedimentation	relations	Ablation/melting
bankfull discharge vs.	terrace tread	Zone of accumulation
flood discharge	terrace scarp	Zone of ablation
meander scrolls	paleohydrology	Glacial erosion
centrifugal force	slackwater deposits	Plucking

Abrasion
Subglacial water flow
Glacial Deposits
Drift
Till

Outwash Erratics Diamicton

Alpine Erosional Landforms

Cirque Tarn Arete Cols/Horn

U-shape valley
Hanging valley

Fjords

Roche Moutonee Striated pavement

Alpine Depositional Landforms

Moraine
End Moraine
Lateral Moraine
Medial moraine
Terminal moraine

Continental Landforms
Drumlin

Esker Kame Kettle

Outwash Plain

Quaternary Climate Change

Pleistocene Ice Ages Glacial/Interglacial Climates Solar-Geothermal Exchange Global climate change Greenhouse effect

Greenhouse gases Carbon Cycle

Laurentide Ice Sheet

Quaternary Sea Level Curve Evidence of Past Glaciation

Continental Landforms
Continental Deposits

Marine Record
Oxygen Isotopes
Fossil Evidence
Paleoclimatology

Cordilleran Ice Sheet Sea-Level Fluctuation Global Sea Level Change

Pluvial Lakes Great Lakes Missoula Floods

Ice Cores

Glacial maximum Oxygen isotope stages

Ice-Ocean Isotope Exchange

Ocean cores Ice cores

100,000-43,000-20,000 Stable Isotope Analysis Oxygen18/Oxygen16 Global ice budget Global ocean budget isotopic fractionation

"heavy water"
"light water"
glacial climate
interglacial climate

ice sheet evaporation

late Wisconsinan ice global sea level eustatic sea level deep sea drilling O18 stratigraphy O18/O16 ratio global correlation radiometric dating orbital forcing

general circulation model Milankovitch Theory

obliquity
eccentricity
precession
angle of earth tilt
orbital path
plane of ecliptic
Global Warming

Key Word Worksheets	Drainage Divide
	Runoff (provide sketch)
glacier	Infiltration
alpine glacier	Overland flow
ice sheet	Base flow
temperate glacier	Flood hydrograph
polar glacier	Recurrence interval
snow-firn-ice	Strahler Stream Order . Drainage density
glacier ice budget – advance – retreat (explain)	Channel gradient
brittle ice	Hydraulic radius
visco-plastic deformation	Discharge
basal sliding vs. internal deformation	Suspended load
zone of accumulation	Bedload
zone of ablation	Dissolved load
crevasse	Sediment yield
abrasion and striation	Laminar flow
quarrying or plucking	Turbulent flow
Cirque	Mannings Equation
Arête	Stream power
horn	Abrasion
fjord	Denudation
non-stratified drift	Aggradation
stratified drift	Meandering channel
till	Vertical accretion
outwash	Braided channel
moraine	Floodplain (provide photo)
lateral moraine	Levee (provide photo)
end moraine	River terrace (provide photo)
esker	Strath terrace (provide sketch)
drumlin	Fill terrace (provide sketch)
loess	Alluvial fan (provide photo)
kettle	Pediment (provide photo)
bonus term: "pingo"	Delta (provide photo)
bonus term: "rock glacier"	
Drainage Basin	
Other Lab skills / Concepts	
Topographic Maps	climate interpretation
landform identification	scale determination
stream gradient calculation	Fluvial Lab
hillslope gradient calculation	work key equations:
elevation / relief	mannings
topographic profiles	continuity
scale / vertical exaggeration	stream power
Air Photo Interpretation	discharge
3-D stereo view	unit conversions
landform identification	determine stream gradient

- -be able to identify fold and fold features from topographic maps
- -understand the relationships from the "fluvial balance" model of aggradation and degradation
- -be able to interpret relationships between tectonic uplift and global sea level change, can you identify which process is affecting a given sea level record
- -how has global sea level changed during the late Quaternary, and why?
- -make sure you can calculate slopes and gradients from topographic maps
- -can you plot a ternary diagram using soil texture data?
- -can you determine the recurrence interval of a given flood discharge?
- how about solving hydraulic flow problems using Manning's Equation and the Continuity Equation?
- -what is the relationship between river load, type of sediment, and river morphology?
- -can you identify landforms / geologic processes from air photos?
- -how about identifying other landforms: e.g. point bar, cut bank, alluvial fans, deltas, lava flows, volcanoes?
- make sure you understand all of the concepts associated with the coastal geomorph. lab, as they apply to the pacific northwest.

Process Rate Calculations

Basic map reading / landform identification from a topographic map.

Given a rate of weathering and "soil erosion", calculate the equivlalent rate of crustal denudation and rock erosion

From a topographic map, caculate hillslope gradient (in degrees, in percent, in ratio form)

Draw a topographic profile from a topographic map.

determine slope stability; calculate gradient and slope angle in degrees and percent

air photo scale calculations, other air photo calculations as in lab

identification of basic landforms and geomorphic process by examining aerial imagery

calculating the slope of stream channel or hillslope from a topographic map (in degrees and percent)

Aerial photography calculations: photo scale, height-displacement calculations, photo distortion principles, 3-d viewing of landforms.