

Figure 1-2 Electromagnetic spectrum. Expanded versions of the visible, infrared, and microwave regions are shown in Figure 1-3.

Table 1-3 Electromagnetic spectral regions

Region	Wavelength	Remarks
Gamma-ray region	< 0.03 nm	Incoming radiation completely absorbed by the
		upper atmosphere and not available for remote sensing.
X-ray region	0.03 to 30 nm	Completely absorbed by the atmosphere.
		Not employed in remote sensing.
Ultraviolet region	0.03 to 0.4 µm	Incoming wavelengths less
		than 0.3 µm completely absorbed
		by ozone in the upper atmosphere.
Photographic UV band	0.3 to 0.4 µm	Transmitted through the atmosphere.
		Detectable with film and photodetectors,
		but atmospheric scattering is severe.
Visible region	0.4 to 0.7 µm	Imaged with film and photodetectors. Includes
		reflected energy peak of earth at 0.5 µm.
Infrared region	0.7 to 100 μm	Interaction with matter varies with
		wavelength. Atmospheric transmission
		windows are separated by absorption bands.
Reflected IR band	0.7 to 3.0 μm	Reflected solar radiation that contains no information
		about thermal properties of materials. The interval
		from 0.7 to 0.9 µm is detectable with film and is
		called the photographic IR band.
Thermal IR band	3 to 5 μm, 8 to 14 μm	Principal atmospheric windows in the thermal
		region. Images at these wavelengths are acquired
		by optical-mechanical scanners and special vidicon
		systems but not by film.
Microwave region	0.1 to 100 cm	Longer wavelengths that can penetrate clouds, fog,
		and rain. Images may be acquired in the active
		or passive mode.
Radar	0.1 to 100 cm	Active form of microwave remote sensing. Radar
		images are acquired at various wavelength bands.
Radio	>100 cm	Longest-wavelength portion of electromagnetic
		spectrum.

Figure 1-8. The obtaining of sidelap photographic coverage. The plane at station L_1 , flying toward the reader, photographs ground area AK. At air station L_2 , while flying away from the reader, it

photographs area GT. The area common to both is area GK, the sidelap area.

Figure 1-9. The obtaining of overlap photographic coverage. From station L_1 , area AK is photographed; from Station L_2 , area GT is photographed. The overlap shown (GK) is 60 per cent. The nadir points N_1 and N_2 are included in the overlap area

and appear on both photographs. Locate camera station L_2 . By construction, show that part of overlap area GK is included in the coverage of the third photograph.

Figure 1-21. (A) Overtap photography obtained when camera is oriented parallel to airplane during crab. (B) Overlap photography obtained when camera orientation is adjusted to compensate for crab.

Table 1-1 Metric nomenclature for distance

U	nit				Sym	abol		Equ	eiv <i>al</i> e	mt-		
-												
K	ilome	ter	N/		km						10-3	
M	ictor*				m						: 100	
C	entin	veter		a (14) Kalada	cm		,		0:0	lm=	: 10	m
M	fillio	eter			mn	1					= 10	
M	licro	nete	r _p		μm			0.0	0000		= 10	m
 N	anon	nete	Ć		nm					10-9	m	

Basic unit

Formerly called micron (µ).

Figure 2-9 Geometry of relief displacement on a vertical serial photograph.

PHOTOMOSAICS

Acrial photographs are typically acquired at scales of 1:80,000 or larger and therefore cover relatively small areas. Taking photographs on a series of perallel flight lines provides broader coverage. Along a flight line, successive plic-

tographs are acquired with 60 percent forward overlap (Figure 1-11). Flight lines are spaced to provide 30 percent sidelap, which is the overlap between adjacent strips of photographs. A photomosaic is a companie of these individual photographs that covers an extended area. Figure 2-10A is a photomosaic of the northern Coachella Valley in southern

Figure 2-7 Aerial photographs of Palos Verde Peninsula, California, acquired at different camera heights with a 152-mm-focal-length lens. Table 2-1 lists minimum ground separation values for this medium-resolution system. The southeastern corner is common to all photographs.

Figure 2-8 Vertical aerial photograph of Long Beach, California, showing relief displacement. Courtesy J. Van Eden.

easured using the scale of the photograph, and the height is deulated from Equation 2-4 as

 $=\frac{212 \text{ m} \times 40 \text{ m}}{260 \text{ m}} = 32.6 \text{ m}$

Orthophotographs are aerial photographs that have been scanned into a digital format and computer-processed to remove the radial distortion. These photographs have a consistent scale throughout the image and may be used as maps.

Home 2.94. The everlap photography of seen VWYZ. Ground points N_1 and N_2 are the nadir points of the two photographs. Ground point P_1 midway between points N_1 and N_2 is the streenespic prospective control. Superscripts model distortions are radial from this point (i.e., along thus PQ and PT).