Mathematics as a tool for solving
geological problems

1.1 Introduction

This book is not about specialized geological mathematics. Mostly, this book
is about simple mathematics, the sort that many people are introduced to at
school. However, such mathematics is frequently poorly understood by geo-
logy undergraduates and few students are able to use the maths they know for
solving realistic problems. The objectives of this book are to improve under-
standing of simple mathematics through the use of geological examples and
to improve ability to apply mathematics to geological problems.

This is not a formal mathematics textbook. My aim is to try to instil an
intuitive feel for maths. I believe that this is more helpful than a rigid, formal
treatment since formality can often obscure the underlying simplicity of the
ideas.

Although this book concentrates upon standard mathematical procedures,
it does contain a few more specialized techniques. The majority of the math-
ematics encountered by typical undergraduate students is therefore covered
here. The exception is, perhaps, statistics which forms a large part of geo-
mathematics and which is well covered by many excellent textbooks. The
statistics chapter in this book should form a good introduction to the
material covered in those more specialized texts.

Mathematics is much more akin to a language than a science. It is a method
of communication rather than a body of knowledge. Thus, the best way to
approach a book like this is as you would a text on, say, French or German.
You are learning how to communicate with people who understand the
mathematical language. You are not learning a collection of facts. Another
similarity to learning a language is that you must never pass on to the next
lesson until you have grasped the current one. If you do, you will get hopelessly
lost and demoralized since subsequent chapters will simply make no sense.

So that you know you have understood sufficiently to move on, each
chapter is sprinkled with examples for you to attempt. Mostly these are very
short and simple. A few, however, are more difficult and are designed to
make you think carefully about the maths just discussed. If you are unable to
do one, you should read over the preceding paragraphs again and make sure
that you have understood everything. If that does not help then get assistance.
Each chapter concludes with additional simple questions as well as more
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wide ranging questions which will test your ability to apply what you have
learnt to more realistic problems. Outline answers to most questions are
given at the end of the book and more complete answers are given for some of
the more difficult problems. Look carefully at these complete answers since
they also show how your answers shoiild be set out. Lassume, throughout this
book, that you have a caleulator and know how to use it.

One difficulty that many students have with mathematics is the large
number of specialized mathematical words. Sometimes these words are com-
pletely new to the student whilst other times they are used in a similar, but
somewhat more precise, manner to their everyday meaning, It is impossible
to avoid use of such words since they are vital in mathematics. Wherever 1
introduce such a word it is in bold face (e.g. jargon).

This first chapter is about basic tools that are needed in succeeding chap-
ters and will introduce you to the most important ideas needed for application
of mathematical principles to geological problems.

1.2 Mathematics as an approximation to reality

Geology is frequently regarded as a qualitative (i.e. descriptive) science.
Geological discussions often revolve around questions about what happened
and in what order. For example, was a particular area under the sea when a
given sedimentary rock was deposited and does the erosive surface at the top
imply that uplift above sea level occurred subsequently? However, the same
geological information can be described quantitatively (i.e. by numbers). In
the preceding example, how deep was the sea and how long was it before
uplift occurred? Geology is also concerned with the influence of one process
upon another. How does changing water depth affect sediment type? Once
again, it is possible to do this quantitatively by producing equations relating,
say, grain size to water depth (unlikely to be very accurate but in principle
possible).

Present water level

|}l b

Lake bed

Buried sediments

Fig. 1.1 Sedimentation ata lake floor. Older sediments are slowly buried by younger deposits.
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Figure 1.1 illustrates a situation in which a quantitative description can be
attempted. The figure shows a lake within which sediment, suspended in the
water, rains down and slowly builds up on the lake floor. Obviously, early
deposits will be covered by later ones. This results in a relationship between
depth below lake bed and time since deposition; the deeper you go the older
the sediments get. Now, if the rate at which sediments settle upon the floor is
approximately constant, sediments buried 2 metres below the lake bed are
twice as old as sediments buried by 1 metre and sediments buried by 3 metres
are three times as old and so on. Thus, if you double depth, you double the
age, if you triple depth you triple the age and so on. This means that the sedi-
ment age is proportional to burial depth. This can be expressed, mathemat-
ically, by the equation

Age = k.Depth (1.1)

where k is a constant. Constants are values which don’t change within a
given problem. The period symbol, ‘., is often used in place of ‘X’ to indicate
multiplication and so Eqn. (1.1) reads ‘Age equals k multiplied by depth’
which can equally well be written in the forms

Age =k X Depth (1.1)
or
Age =k Depth (1.1)

All of these different forms for Eqn. 1.1 simply indicate that the age of the
sediment equals its depth multiplied by a constant. This constant tells us how
rapidly sediments accumulate. A large value for k implies that age increases
very rapidly as depth increases (i.e. sediments accumulated very slowly). A
low value implies that the age increases more slowly (i.e. sediments accumu-
lated more rapidly). In a particular lake it might take 1500 years for each
metre of sediment to accumulate. In this case k = 1500 years/metre. A lake
with a lower sedimentation rate of, say, 3000 years/metre, would have a
more rapid increase in age with depth of burial.

Question 1.1 If k = 1500 years/metre calculate, using Eqn. 1.1, the age
of sediments at depths of 1 metre, 2 metres and 5.3 metres. Repeat the

calculations for & = 3000 years/metre.

As you see, it is possible to produce mathematical expressions relating
geological variables to each other. A variable is a quantity which, in a par-
ticular problem, can change its value, e.g. the variable called Age in Eqn. 1.1
changes when the variable called Depth is altered. Are such quantitative
descriptions worth bothering with and are the results worth having? Well, it




4 Chapter 1

depends! Sometimes such an exercise will not tell you anything you didn’t
already know. On other occasions the ability to manipulate and combine
mathematical expressions can lead to new insight into geological processes.
Mathematical expressions also have the great merit of consistency, they
always give the same answer when you use the same data (unlike some
geologists I know). Finally, mathematical expressions are capable of being
definitively tested. An expression can be used to predict a result and that
result can then be checked. Equation 1.1 could be used to predict the age at
a particular depth and that age could be tested using, say, a geochemical dat-
ing method. If the age is very wrong then there is something wrong with
the geological or mathematical model, e.g. some important factor is missing.

Unfortunately, it is quite possible for mathematics to give the wrong
answer. In fact, mathematical results are rarely 100% correct. Hopefully
though, a mathematical relationship is at least approximately true. The lake
sediment example, Eqn. 1.1, is a good case. The assumption that sedimenta-
tion happened at the same rate throughout deposition and the, hidden,
assumption that the sediments are not compacted by the weight of overlying
deposits are unlikely to be completely true. However, provided the sedi-
mentation rate does not vary too much and provided sediment compac-
tion is not too extreme, Eqn. 1.1 should be approximately correct. This is
all that is necessary for a mathematical formulation to be useful. It is worth
keeping this fact, that mathematical expressions are usually approximations,
at the back of your mind. People often make the assumption that, because
a mathematical expression is being used, the answer must be right. This is
simply not true, not even in physics (equations in physics are also approx-
imations to reality although the approximation is usually so good that this
can be safely overlooked).

A final general point about using mathematics for solving problems. If you
look on any page in this book, or at any mathematical paper in a geological
journal, you will see that there is far more text than there is mathematics.
A frequent failing in students’ use of mathematics is to write down lots
of equations with no explanation of what they are or what they mean. The
result is an obscure piece of work which nobody else, even the students them-
selves 6 months later, can understand. It is also a recipe for sloppy or illogical
mathematics. A good guide is that there should be rather more English in a
piece of mathematics than equations. The object is to tie the mathematics
in with the ‘real world’ it is describing. We are dealing with applied rather
than pure mathematics and it is vital that the geological relevance of any
mathematics you use is made totally clear. Hence, the aim is to describe the
geological context rather than details of the mathematics itself. At the very
least, you must describe all of the constants and variables that you use. It is
also good practice to number all equations since this makes it easier for your-
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self, or anybody else, to refer to a particular expression in later discussion.
Finally, a clear diagram is usually an important part of a good mathematical
explanation,

1.3 Using symbols to represent quantities

The lake sediment equation used the word Depth to represent the quantity
depth. However, any other symbol would do equally well. Equation 1.1

Age = k.Depth (1.1)
could be written
a=kz (1.2)

where a is age, k is the sedimentation constant and z is depth. Alternatively, it
could be written

o=x{ (1.3)

where o is age, « is the sedimentation constant and { is depth (see Table 1.1
for a list of Greek letters such as those used here). The point is that it really

Table 1.1 Lower case and upper case

letters of the Greek alphabet. Greek characters Name
o, A alpha
B,B beta
YT gamma
8,A delta
&, E epsilon
£,Z zeta
n,H eta
6,0 theta
L1 iota
x, K kappa
A A lambda
w, M mu
v, N nu

) xi

0,0 omicron
w, I1 pi
p,P rho
o,% sigma
T, T tau
v,Y upsilon
0, @ phi
% X chi
v, ¥ psi
, Q omega
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_ Table 1.2 Commonly used symbols and
Usual meaning their usual meanings.

w

Z
2
=
=

Depth
Temperature

Time

Horizontal distance
Density

Porosity or grain size
An angle

Pressure

Radius

Velocity

Stress

QT X g DEe TV R T R

doesn’t matter. Equation 1.3 is just as valid and just as simple as Eqn. 1.1.
However, the unfamiliarity of Greek letters can make an equation look
rather daunting. The same equation could equally well be written using
Hebrew characters, Chinese pictograms, Egyptian hieroglyphics or even
some completely new set of symbols. The use of Greek letters extensively
throughout mathematics is simply a tradition, although it does have the
benefit of doubling the number of symbols available.

Also traditional is the use of particular symbols to represent commonly
encountered quantities. A good example is z which is nearly always used to
represent depth. A few other common examples are given in Table 1.2 which
is far from complete but it should give the general idea. These symbols are
so commonly used for these particular variables that people frequently forget
to define them. Thus if, in a particular book or paper, the author is discussing
crustal temperatures and the symbol T appears, you can be fairly sure that
this will represent a temperature even if the author forgets to define it as
such. However, this is not good practice and all symbols should normally
be defined.

A few symbols also have specialized mathematical meanings such as the
Greek letter delta (i.e. A or 8) which is used to denote a small change in a vari-
able. If temperature in the lower crust increased, due to some thermal event,
by a small amount (say 10°C) this temperature change is given the symbol
AT (or 8T). If the original temperature was T°C the increased temperature
is then (T + AT)°C. Another, well known, example of reserving a symbol for
a particular mathematical purpose is the use of m to denote the number
3.14 159 . . ., again this is such common usage that you will virtually never
see 1 defined in a book or a paper. In this case, however, this is acceptable
since this convention is universally adopted throughout mathematics and the
sciences. Other examples of specialized mathematical meanings for symbols
will be covered as we come across them in this book.
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1.4 Subscripts and superscripts

Another feature of mathematical expressions, which some people find con-
fusing, is the use of subscripts and superscripts. Subscripts are usually used
to qualify the meaning of a symbol. For example, if T is used in an expres-
sion to denote temperature as a function of depth in the earth, then T
might well be used to denote the temperature at the Earth’s surface (i.e.
at depth = 0.0 metres). Similarly, if a sandstone and a shale are being com-
pared, their densities might be given the symbols p, 4 and pg,., respect-
ively, and their porosities would be given the symbols ¢, 4 and ¢ ;.. The use
of subscripts is no different from the use of any other strange character
to denote a quantity. Subscripts simply clarify the meaning of a particular
symbol.

In sharp contrast, superscripts (often called exponents) have a definite
mathematical meaning. A superscript is an instruction to raise a number to a
power. Thus a2 means ‘square a’, @3 means ‘find the cube of 4’ and a» means
‘multiply a by itself # times’. Whilst on the subject of raising numbers to a
power, it is worth briefly reviewing a couple of simple points that will be
needed later on. There are three manipulations in particular that you should
be familiar with,

xaxb = xatb (1.4)
xafxb = xa=b (1.5)
and

(xa)b = xab (1.6)

For example, one hundred (= 102) times one hundred equals ten thousand
(= 104),1.e.

102 x 102 =102+2 =104
and the cube of four (4 = 22) is sixty-four (64 = 26), i.e.

(22)3 = 22x3 = 26

Question 1.2 Simplify and, where possible, evaluate the following
expressions

(i) 5100.54;

(i) (5100)4;

(iii) x2.x3;

(iv) Depth2.Depth?

(v) (T8)4 where T;) = 10.
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Table 1.3 Some large numbers

Number Power of 10 expressed as positive powers of ten,
1 000 103
10 000 104
100 000 105
1 000 000 106
1 billion 100

1.5 Very large numbers and very small numbers

Many quantities in geology are very large (e.g. the mass of the Earth) or very
small (e.g. the mass of gold in one litre of sea water). It is therefore vital that
you understand how to deal with very small or very large numbers. Two ways
of talking about such extreme numbers are:

(i) The use of scientific notation;

(i) The use of special, very large or very small, units,

Methods are also required for specifying very small fractions such as the frac-
tion of a rare element contained in a mineral specimen.

Scientific notation (or standard notation) is the most flexible of the
methods for discussing the very large and the very small. Table 1.3 shows
how various large numbers can be represented by powers of ten. Note that
in this book, and in most scientific literature, the American definition for
one billion (one thousand million) is used rather than the British {one million
million). The quick way to find out which power of ten to use for a particu-
lar number is simply to count the number of zeros. One million is 1 followed
by 6 zeros and therefore equals 106,

This is fine for giving large numbers which are an exact power of ten. What
about numbers such as two million? This is easy, two million is two times one
million. This number is therefore written

2 000 000 =2 x 1 000 000
=2x106

This is an example of scientific notation for a large number. Other more
complex numbers can also be dealt with such as 2 200 000. This is simply
2.2 times one million and can therefore be written as 2.2 x 106. The same
number could equally well be thought of as 22 times one hundred thousand
leading to 2 200 000 = 22 x 105. However, for scientific notation it is usual
to have the multiplier falling between one and ten and so the former expres-
sion (i.e. 2.2 x 106) is preferred.

Small numbers can be dealt with in a similar manner. Table 1.4 shows how
various small numbers are expressed as powers of ten. Again there is a quick
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Question 1.3 Express the following numbers in scientific notation:
(i) 1000;
(i) 2000;

(iii) 2500

(iv) 2523,

(v) 23 000 000;
(vi) Seven billion.

Table 1.4 Some small numbers

expressed as negative powers of ten. Number Power of 10
0.001 10-3
0.0 001 ’ 104
0.00 001 10-5
0.000 001 10-6
1 billionth 10-9

way of determining the power of ten to use. Count the zeros including the
zero before the decimal point. For example, 0.0 001 has four zeros in total
and is written as 10-4. Don’t worry if it is not clear to you why a negative
power of ten can be used to express these small numbers, this will be
explained further in Chapter 2. For now it is only necessary that you accept
that it works. Extending this system to numbers which are not exactly

a power of ten is then achieved by introducing a multiplier. For example,
0.0 002 is twice 0.0 001 giving

0.0 002 =2 x 0.0 001
=2x10-4

Another example is 0.0 000 054 which is written

0.0 000 054 = 5.4 x 0.000 001
=35.4x10-¢6

Question 1.4  Express the following numbers in scientific notation:
i) 0.001;

i) 0.002;

iii) 0.0 025;

iv) 0.002 523;

v) 0.0 000 023;

vi) Seven billionths.

=N pm == g = ==
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Table 1.5 List of prefixes used in the SI system.

Multiple Prefix Symbol Example

10-18 Atto a Attometre {(am)
10-15 Femto f Femtometre (fm)
10-12 Pico p Picometre (pm)
10-2 Nano n Nanometre (nm)
10-6 Micro n Micrometre (pm)
10-3 Milli m Millimetre (mm)
1 No prefix Metre (m)

103 Kilo k Kilometre (km)
106 Mega M Megametre (Mm)
100 Giga G Gigametre (Gm)
1012 Tera T Terametre (Tm)

SI (Systeme International) units are an alternative to the use of scientific
notation. In this system a new unit is introduced for each thousand-fold
increase or decrease in size. For example, the basic unit of distance is the
metre (m). The next unit up from this is the kilometre (km) which is one thou-
sand times bigger. One thousand kilometres is one million metres and this
unit is denoted the megametre (Mm). Continuing on up the sequence we get
one billion metres (the gigametre, denoted Gm) and one million million
metres (the terametre, denoted Tm). Moving in the opposite direction, one
thousandth of a metre is a millimetre (mm) and one millionth of a metre is a
micrometre (Wm). Finally, we get one thousand millionth of a metre which
is called a nanometre (nm). Exactly the same set of prefixes is used for any
other SI unit. Thus, the mass units, starting from the very small and increasing
one thousand-fold for each step, are the nanogram (ng), the microgram (pg),
the milligram (mg), the gram (g), the kilogram (kg), the megagram (Mg), the
gigagram (Gg) and the teragram (Tg). These prefixes, and a few extra ones,
are summarized in Table 1.5.

It is worth noting that a frequently encountered error in the use of this sys-
tem is to use ‘K’ rather than ‘k’ in, for example, kilometre (i.e. this is written
km not Km). A capital K is reserved for the Kelvin scale of temperature and
thus ‘Km’ is an abbreviation of ‘Kelvin metres’ not ‘kilometres’. Another
point to note is that one very commonly encountered unit, the centimetre
(cm), is not an ST unit and its use should normally be avoided.

Apart from common usages such as kilometre and kilogram, the SI method
for discussing the very large or the very small is not widely employed in geo-
logy. One exception is the use of ky and My for thousands of years and mil-
lions of years, respectively (N.B. ka and Ma are also frequently used to denote
thousands of years and millions of years). Strictly speaking, these are not
SI units since the SI unit of time is the second. Nevertheless, ky, My, ka and
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Ma are very commonly used in the earth sciences and therefore need to be
understood.

Question 1.5 How long, in years, is 31.6 gigaseconds? (Hint: First work
out how many seconds there are in a year of 365.24 days.) Using scientific
notation, how many seconds is this?

When it comes to denoting very small fractions, the usual approach is a
simple extension of the percentage system. In percentage notation, the figure
23%’ means 23 parts in every hundred. Thus, if a rock specimen is 23% iron
by weight, it contains 23 grams of iron in every 100 grams of rock. However,
this is not a convenient system for discussing trace elements present in very
small fractions of a per cent. Small proportions can be represented by talking
about parts per million (ppm) or parts per billion (ppb). The rock specimen
might contain 17 ppb of the element lanthanum. This means that every
billion grams will contain 17 grams of lanthanum. It might also contain, say,
10 ppm of gold. Thus every million grams of rock will contain 10 grams of
gold (i.e. 10 grams of gold in every metric tonne of rock).

Question 1.6 Express 0.01% in ppm.

1.6 Manipulation of numbers in scientific notation

Scientific notation is used frequently both in this book and throughout geo-
logical literature. You therefore have to know how to add, subtract, multiply
and divide numbers expressed in this way.,

The trick with addition or subtraction is to use the same power of ten for all
numbers. For example, the net rate of increase in mountain height is given by
the rate of uplift, which increases mountain height, minus the rate of erosion
which tends to reduce mountain height. If the rate of uplift is 3 x 10-3 m/y
whilst the rate of erosion is 5 x 10-4 m/y, the net rate of increase in the
mountain height is

Rate of increase in height = Rate of uplift — Rate of erosion
=(3x10-3) - (5x10-4) (1.7)

The problem here is that the first number has an exponent of —3 whilst the
second has an exponent of —4. However, the rate of erosion can be expressed
with an exponent of —3 as follows

S5x10-4=0.5x10-3

Note that the 5 has been reduced by a factor of ten (to give 0.5) whilst the
10-4 has been increased by a factor of ten (to give 10-3). Thus, the overall
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effect is to leave the value unchanged. Replacing the rate of erosion by this
new expression gives

Rate of increase in height = (3 x 10-3) — (0.5 x 10-3)

Once the numbers have been expressed using the same power of ten, the
subtraction can be performed

Rate of increase in height = 2.5 x 10-3 m/y.

Question 1.7 Evaluate the following:
(i) (2.5 x 10109) + (1.5 x 1010%);

(ii) (2.5 x 10109) + (1.5 x 10108);

(i) (2.5 x 10211) — (1.5 10211);
(iv) (2.5 % 10211) — (1.5 x 10210),

Multiplication and division are more straightforward. The trick here is to
rearrange the expressions so that all the multipliers are together and all the
powers of ten are together. Some examples should illustrate this:

(2.5 x 104) x (3.0 x 103) = (2.5 X 3.0) x (104 x 103)

where, at this point, no calculation has been performed. The multipliers and
powers of ten have simply been collected together. The calculations implied
by the two bracketed terms can then be evaluated to give

(2.5 x 3.0) x (104 x 103) = 7.5 X 107
Similarly, for division

(5 x 104)/(2.5 x 103) = (5/2.5) % (104/103)
=2x101=20

Combined examples are also done this way, e.g.

(2.5%x104) x (3.0x103) _2.5% 3.0 « 104 x 103

7.5 %106 7.5 106
=(7.5/7.5) x (107/106)
=1.0x 10t
=10.0

Question 1.8 Evaluate the following:
(i) (2 x 10200) x (3 x 10100);
(i) (4 x 10110)2;

(iii) (4 x 10107)/(2 X 10107);
(iv) (6 x 10100)/(3 x 1050).
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Question 1.9 If the mass of the Earth is §.95 x 1024 kg and the volume is
1.08 x 1021 m3, calculate the average density. (Note that density is mass
divided by volume).

I will finish this section with a few words of warning about using calculators
for performing these sorts of calculations. There are two problems which
this frequently causes. Firstly, many students will write down the results in a
similar way to the manner in which they appear on the calculator display.
Thus, if the correct answer is 3.01 x 108, this appears in the calculator some-
thing like . There is a strong temptation to write this down as 3.018
which means 3.01 to the power 8 rather than 3.01 times 10 to the power
8. The second problem is that many students would enter this number by
typing the following buttons: ,[l, @,,,,@, ,@Which gives a
display reading . This is because the correct sequence of buttons
should have been: ,D, @, , , @ since the button means mul-
tiply by 10 to the power of the following number. Try entering 3.01 x 108
in the two ways suggested above, and you should see what I mean. In general,
I would strongly recommend that you perform calculations involving powers
of 10 by using the methods shown in the earlier examples.

1.7 Use consistent units

Whenever a calculation is performed, all values used must be expressed using
the same units. For example, in the calculation given above for finding the
rate of rise of a mountain

Rate of increase in height = Rate of uplift — Rate of erosion (1.8)

the rate of uplift and the rate of erosion must be given using the same units.
Thus, if the rate of uplift was given as

Rate of uplift= 3 x 10-3 m/y
whilst the rate of erosion was given as
Rate of erosion= 1 m/ky

the calculation cannot be performed using these figures since the first figure
has units of metres per year whilst the second has units of metres per thou-
sand years. One of the two figures must be converted to the form of the other.
In this case it is probably easiest to rewrite the rate of uplift as

Rate of uplift= 3 m/ky

which is the same as 3 x 10-3 m/y since the amount of uplift in one thousand
years is 1000 times more than that in one year (ie. 103x 3 x 10-3=3).
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Equation 1.6 can then be evaluated to give a net rate of mountain rise equal
to 2 m/ky.

Similarly, in the lake sedimentation problem (Eqn. 1.1) all figures must
have consistent units. Thus, if the age is quoted in years and the depth is
quoted in metres, the sedimentation constant will have units of years/metre.
If a depth is given in centimetres whilst k is given in years/metre, the depth
must first be converted to metres before the calculation of age is done.

Question 1.10 Using Eqn. 1.1 and a sedimentation constant of
1000 years/metre, find the age of sediment buried at a depth of 30 cm.

1.8 Spreadsheets

Mathematics and computers are complimentary tools in quantitative science.
Mathematics tells us what to calculate whilst computers are increasingly used
to perform the final, usually numerical, calculations. Specialized software is
often used to perform computations specific to a particular set of problems.
However, some computer packages are much more general and can be used
to solve many different problems. Of these more general purpose programs,
spreadsheets must be the most widespread, useful and easy to use.

Spreadsheets consist of grids into which text, numbers or formulas can be
typed. Figure 1.2 shows a very simple spreadsheet which lists the number of
sites visited on four successive days of fieldwork. All cells contain precisely
what you see in Fig. 1.2 (i.e. text or a number) apart from cell B7 which con-
tains the formula = B2 + B3 + B4 + BS, i.e.an instruction to add together the
contents of cells B2 to BS. Note that the same result could have been achieved
if the formula = sum (B2 : BS) had been used instead.

The spreadsheet used to create Fig. 1.2 (it’s called Example.xls) can be
obtained using a Web Browser (e.g. Netscape or Internet Explorer) from
www.gl.rhbnc.ac.uk (use the links button at the top of the page). Alternat-
ively, you can access the same files using anonymous ftp for ftp.gl.rhbnc.ac.uk
to log into the pub directory. This web site also contains many other spread-
sheets (a complete list appears in Index.xls). The sheets are associated with
various parts of this book and are designed to improve your understanding
or to help you apply the mathematics you have learned to your own prob-
lems. These spreadsheets have been written using Excel version 7.0 but
other packages (e.g. Lotus 123) should be able to read them provided they
are reasonably recent versions. Most of these spreadsheets are password
protected to prevent you from accidentally corrupting them but, if you are
a confident spreadsheet user, you are welcome to alter them in any way you
like. All sheets and workbooks are protected using the password maths for

. m
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A B

1 Day Number

2 Monday 1

3 Tuesday 3

4 Wednesday 5
Fig. 1.2 Example spreadsheet. All cells 5 Thursday 2
here contain either text or a number 6
apart from cell B7 which contains a

. 7/ Total 1

formula whose resultis 11.

geologists. It is quite possible to use this book without using the spreadsheets
but, if you do obtain them, I believe that you will find them helpful.

Many of you probably already know how to use spreadsheets but, even if
you do, have a look at Intro.xls which will show you several spreadsheet fea-
tures we will be using later. It will also help you revise what you have learned
in Sections 1.2 and 1.6 above.

1.9 Further questions
1.11 IfQy=3.1x 104and p = 2.7 x 10-2 evaluate A] = i/ Q

1.12 The Earth gains mass every day due to collision with (mostly very
small) meteors. Estimate the increase in the Earth’s mass since formation
assuming that the rate of collision has been constant and that

AM =6 x 105 kg/day
A,=4.5x10° years

where AM is the present-day rate of mass gain and A, is the age of the Earth.
What is this mass gain as a fraction of the total present mass of the Earth, M,
where

M,=595x1024 kg

Re-express this answer in ppb. Given that the Earth is believed to have
formed by a process of accretion, has the rate been constant throughout the
Earth’s history?

1.13 Calculate the volume of the Earth using the expression

V= 4mr3
3

where 7 is the Earth’s radius (equal to 6.37 x 106 m). Note that this method
assumes that the Earth is a perfect sphere.



16 Chapter 1

1.14 How long would it take to travel 100 km at 20 km per hour? The
following problem is identical in form:

The North Atlantic Ocean is getting wider at an average rate, v, of around
4 % 10-2 m/yr and has a width, w, of approximately 5 x 106 m.

(i) Write an expression giving the age, A, of the North Atlantic in terms of v
and w assuming the present-day spreading rate is typical of the ocean’s entire
history.

(ii) Evaluate your expression by substituting the values given above.

1.15 Insimple models of mountain formation, the mountain is supported by
thickened crust such that

Az=hp_IAp

where Az is the amount of crustal thickness, / is the mountain height, p, is
the density of the crust and Ap is the density contrast between the crust and
the underlying mantle. Calculate the increase in crustal thickness under a
mountain of height 4 x 103 m if the crustal density is 2.5 x 103 kg/m3 and the
density contrast is 500 kg/m3.



