Chapter 3

o -

Frequency Distributions

1. Introduction

The most fundamental type of data collection problem that lends itself to
statistical analysis involves the measurements of each of a set of objects on a
single variable; for example, achievement test scores of a set of students. While
there are many different types of analysis that such data could be subjected to,
in this chapter we will introduce the most basic type of statistical analysis, the
frequency distribution; a simple tally or count of how frequently each value of
the variable occurs among the set of measured objects.

2. Creation of a Frequency Distribution

To better understand the procedure and rationale for creating a frequency
distribution, we can consider a typical example of its application. Table 1
presents the test performance of 36 students. The data could just as well
represent the number of accounts opened by a set of sales reps, the number of
arrests among a set of criminals, the number of absences among a set of
employees, the number of operations performed among a set of surgeons, the
heights of a set of children; or, if the objects were other than people, the
maze-running errors of a set of rats, the crop yields of various plots of land,
the prices of stocks, the recall levels for different TV commercials, etc.

While an inspection of the raw data presented in Table 1% provides
information about the individual performance of the students, it is difficult to
get a concise picture of their overall collective performance. The data would be
more comprehensible if it could be summarized into a more compact and
interpretable form. This is where the frequency distribution comes into play. In
examining the data we notice that many values of the variable occur more than
once, so it is reasonable that we can summarize the data by making a tally or
count of how frequently each value occurs. In constructing such a frequency
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30 FREQUENCY DISTRIBUTIONS
Table1 Test scores of 36 individuals.

Individuals Test scores Individuals Test scores
Anderson, B. 12 Kornfield, L. 11
Andrews, T. 9 Lee, R. 10
Barclay, S. 8 Logan, B. 14
Bishop, C. 10 Marsh, N. 8
Brody, R. 15 Melrose, G. 10
Carlton, M. 11 Moran, C. 9
Clark, D. - 7 Noble, V. 10
Cox, S. 14 Parker, L. 12
Dewey, D. 10 Potter, D. 13
Edelman, P. 13 Rhodes, F. 8
Farrell, J. 11 Rubin, B. 10
Fx:ank, R. 7 Schultz, R. 11
Gibbs, J. 9 Silver, W. 9
Gray, W. 11 Stack, E. 13
Harmon, G. 12 Thomas, J. 12
Ho-dge, N. 14 Vargas, R. 11
Irving, T. 6 Weiss, C. 10
Kent, N. 16 Wheeler, E. 9

distribution, the most logical arrangement of the values of the variable is either
from lowest to highest, or from highest to lowest, whichever we prefer.

In the present example, the test scores range from a low of 6 to a high of
16, and are listed in the first column of Table 2. In the second column of Table
2 is a tally of how frequently each value of the variable occurs. It was obtained
by working down the list of 36 values appearing in Table 1, and making a tally
mark for each one beside its corresponding value in Table 2. Finally, in column
(3), the tally counts are shown in their numerical form. Columns (1) and (3),
thep, comprise a frequency distribution table. The column (2) tallies are
typically dropped from the table since they represent an intermediate work
step, although they do serve as a rough graphical portrayal of the distribution.

A comparison of Table 1 with columns (1) and (3) of Table 2 reveals the
data reduction function of a frequency distribution. We find that our original
set of data has been condensed and summarized into a more compact and
interpretable form. At a glance we know the range of scores as well as where
they cluster most heavily. These features of the data were not readily apparent
from a mere inspection of Table 1. With larger collections of data, the benefits
of the frequency distribution are even more apparent.

Relative frequencies. It is often helpful to convert the frequencies of a
frequency distribution into relative frequencies, which are nothing more than
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Table 2 Frequency distributions of 36 test scores. ”
a @ 3 @ ) © &
Cumulative
Tally of Relative Cumulative relative
Test scores| individuals | Frequencies | frequencies | frequencies | frequencies
6 | 1 2.8% 1 2.8%
7 I 2 5.6 3 83
8 il 3 83 6 16.7
9 W 5 13.9 1 30.6
10 MWl 7 194 18 50.0
11 W 6 16.7 24 66.7
12 I 4 1.1 28 77.8
13 It 3 83 31 86.1
14 il 3 8.3 34 94.4
15 | 1 28 35 972
16 | 1 28 36 100.0
36 100.0%

the observed frequencies converted into percentages based on the total number
of observations.

Such relative frequencies appear in column (4) of Table 2. They were
obtained simply by dividing each frequency in column (3) by the total number
of observations, 36. The relative frequencies tell us at a glance what percentage
of the 36 students had a score of a given value. This information is helpful
since it is often easier to interpret a percentage figure than a raw frequency
figure. For example, it is somewhat more informative to be told that 19.4% of
the students had a score of 10 on the test, than to say that 7 of the 36 students
had such a score.

Cumulative frequencies. There are many times when not only do we want
to know how many observations in a data collection are of a particular value,
but also how many are above or below a given value. For instance, with respect
to the student test scores we might want to know how many .gtudents scored,
say, 10 or lower. To answer such questions we can create a cumulative
frequency distribution, a distribution that indicates how many of the observa-
tions in the data collection occur up fo and including each particular value.

Such cumulative frequencies are shown in column (5) of Table 2. They will
be seen to represent a running total or “accumulation” of the frequencies
appearing in column (3). At a glance, then, we see that 18 of the 36 students
had a score of 10 or lower; or that 34 had a score of 14 or lower. Necessarily,
the highest score in the distribution, in this case 16, must be associated with a
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32 FREQUENCY DISTRIBUTIONS

cumulative frequency corresponding to the total number of observations, in
this instance 36.

Cumulative relative frequencies. Once we have formed a cumulative
frequency distribution, it is a simple matter to convert it into a cumulative
relative frequency distribution. All we need to do is divide each cumulative
frequency by the total frequency of observations. An alternative approach is to
accumulate the relative frequencies. Except for differences due to rounding the
two methods will yield the same results. _

The cumulative relative frequency distribution tells us what percentage of
the total observations in our data collection are of a particular value or lower.
Column (6) of Table 2 shows the cumulative relative frequencies for the
student test score example. We can see at a glance that 66.7% of the students
scored 11 or lower, or that 94.4% scored 14 or lower. If we wanted to know
what percentage scored above a given value, we merely have to subtract the
cumulative relative frequency from 100%. For example, it is easily verifiable
that 83.3% of the students scored above 8.

3. Graphical Presentation

It is usually very informative to make a graphical representation of a
frequency distribution. Such pictorial presentations can show aspects of the
distribution not readily apparent from a tabular presentation. While tally
marks, such as those in Table 1, give us a good picture of the frequency
distribution, we can create a more formal and aesthetic presentation.

The two most common methods of graphically portraying a frequency
distribution are shown in Figure 1. Part a of the figure shows a histogram, or
bar chart, in which the horizontal axis shows the values of the variable in
question, and the heights of the bars above each value represent their respec-
tive frequencies of occurrence. The data is taken from Table 2, the distribution
of student test scores. Notice that Figure 1a is simply an alternative represen-
tation of the tally marks in Table 2, where the values of the variable are
arranged horizontally rather than vertically.

Notice in Figure 1a that we have chosen to portray both the raw frequency
distribution and the relative frequency distribution with the same histogram.
This was accomplished by using the left vertical axis to represent the raw
frequencies and the right vertical axis for the relative frequencies; the conver-
sion of the observed frequencies to percentages having no effect on the shape
of the distribution.

Figure 15 shows an alternative method of graphically portraying a
frequency distribution. It is referred to as a frequency polygon, and is con-
structed by connecting the points which have heights corresponding to the
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Figure 1 Alternative methods for portraying the frequency distribution of the test
scores of 36 individuals as given in Table 2.

frequencies associated with each value along the horizontal axis. Alternatively,
it can be thought of as the connection of the midpoints of the tops of the bars
forming the histogram in part a of the figure. Again, the left vertical axis has
been used to scale the observed frequencies, while the right axis shows the
relative frequencies.

4. Grouping of Data

In the student test scores example we were fortunate that there were only
eleven different values of the variable that occurred, ranging from 6 to 16 in
integral values. At other times, we must contend with variables which assume a
large number of values. For example, if instead of test scores we measured the
students with respect to the variable of weight, we might expect to get values
ranging from under 100 to over 200, and if the weight was measured to the
nearest tenth of a pound, the number of possible values would be very large. In
such situations, it is unlikely that any given value will octur with a frequency
greater than one. Consequently, little is to be accomplished by making a
frequency distribution of each value. The solution to such a data reduction
problem is to create intervals of values of the variable in question, and then
make a frequency tally of the number of observations falling within each
interval.

To demonstrate the grouping procedure we can reanalyze the student test
data using score intervals two units wide. The resulting frequency -distribution
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would be as follows:

Score Interval Frequency

5-6 1
7-8 5
9-10 12
11-12 10
13-14 6
15-16 2

We see that such grouping of the data results in an even greater summary of
the data, though at the same time sacnﬁcmg some detail of the original
distribution.

As can be seen from the above example,: the key issue is to decide into how
many intervals the data range should be divided. This in turn will dictate the
size of the intervals. Although there are no hard and fast rules as to how many
intervals to use, anywhere from ten to twenty intervals, depending upon the
nature and extensiveness of the data, will usually result in a satisfactory
representation of the data’s distribution. To use more than twenty intervals
would be defeating the data reduction objective, while using fewer than ten
intervals might obscure important features of the distribution.

Another important consideration in creating the intervals is to specify the
interval boundary values in such a way that there is no ambiguity as to where a
particular observation falls. For example, if weights of individuals are recorded
to the nearest tenth of a pound, the interval boundaries should be specified to
the hundredth of a pound.

A final consideration in developing an interval scheme is to decide where

" to begin the lowest valued interval; i.e., the one containing the lowest values in
the distribution. In the above example, the 5-6 interval was chosen over a 6-7
interval, based on a flip of a coin. This type of random selection of the exact
location of the bottom interval is to avoid the possibility that personal
judgment affects the shape of the resulting distribution.

In creating a frequency distribution based on grouped data we have lost
the identity of the individual values falling within a given interval, but this is a
small price to pay for the resultant summary of the data that has been

achieved. We will discover this trade-off feature for virtually every statistical .

technique aimed at data reduction. We lose detail, but we gain an overall look
at the data. We may not see the individual trees, but we do see the forest; and
that, in most cases, is better than not being able to see the forest because of the
trees.
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5. Theoretical Frequency Distributions

Until now we have considered only empirical frequency distributions
which are based on a finite number of observations. In most analytical
situations, however, these ‘distributions serve as estimates of theoretical
frequency distributions which are based on an infinite number of observations.

To understand the basic nature of such theoretical distributions, consider
the successive stages of the frequency distributions shown in Figure 2. Begin-
ning with relatively wide intervals, we make them progressively smaller and
smaller, while at the same time increasing the number of measured objects so
that each interval still has many observations falling in it. We continue
diminishing the size of our intervals until the tiny bars of the histogram blend
into a continuous distribution as shown in part d of Figure 2. It can be
imagined as a frequency polygon connecting an infinite number of very narrow
bars of a histogram, bars which approach zero width.

Notice in Figure 2 that once the histogram blends into the continuous
distribution based on an infinite number of observations, we no longer label

(a) (b) ]
f fl- ‘

(c) ' (d)

Figure 2 Progression of a histogram to a theoretical continucus distribution.
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the vertical axis as a frequency measure. Rather, we identify it simply as a
variable y, which now represents the height of the curve and is a function of
the value of the variable along the horizontal axis, which we designate simply
as variable x, meaning it can be any particular variable.

The height of the continuous distribution shown in Figure 2d can no
longer signify the percent of observations having a specific value, for if there
are an infinite number of values along the horizontal axis, and each of them
had a non-zero percentage of occurrence, the sum of those percentages would
necessarily be infinite in size. Yet we know the sum of all observations in the
distribution must equal 100%. We arrive at the somewhat paradoxical conclu-
sion that we cannot ascertain how often any one value occurs, since there are
an infinite number of such values, but yet we know their relative frequency of
occurrence must sum to 100%. Can an infinite number of %’s sum to 100%?

We can reconcile this dilemma by studying two pieces of information. For
one, let us say that to define a particular value on a continuous variable, we
must necessarily create an interval of values. For example, a value of 21 really
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—~represents the interval of values from 20.50 to 21.49. A value such as 21.7

actually represents an interval of values from 21.650 to 21.749. Similarly, a
value of 21.73 actually represents an interval from 21.7250 to 21.7349. No
matter how precisely we try to measure a particular value, it will still be
nothing more than the midpoint of an interval of values. :

The second piece of information needed to resolve the original dilemma is
that the area under the continuous curve, which totals 100%, will now represent
the total of our observations.

It is easy to see, then, how we can determine the relative frequency of
occurrence of a given value—or actually of a given interval of values—in a
distribution based on an infinite number of observations. All we need to do is
measure the area under the curve berween any two values of interest. An example
is shown in Figure 3. By measuring what percent of the area under the curve
occurs between the two indicated values, we will know the relative frequency of
occurrence of that range of scores. And we can make the interval as small or as
large as we like. The method for determining the area under the curve between
a given pair of values will be presented in detail in Chapter 5. '

If the above discussion has seemed a bit abstract, and if it is a little
difficult to immediately understand how we can move from a real-world
histogram based on a fixed number of observations, to a theoretical distribu-
tion based on an infinite number of observations, it should not be the slightest
cause of concern, for we have just touched upon the basic concepts of that
branch of mathematics’known as Calculus, the bane of many a student. But for
our purposes we need not be concerned about the specific mathematics of the
approach. It will be enough for us to understand the concept of a theoretical
distribution, and be able to imagine how a histogram with progressively

Figure 3 'The relative frequency of occurrence of an interval of values.

smaller intervals, and based on an increasingly larger number of observations,
eventually evolves into a continuous distribution based on an infinite number
of observations. Later we will learn more about such theoretical distributions,
and before we are through they will be second nature to us,

6. Shapes of Distributions

To this point we have studied distributions that are more or less alike in
shape; namely, with the majority of the observations clustered at the inter-
mediate values of the variable, with progressively fewer observations at the
extremes of the distribution. While this type of « bell-shaped” distribution is
one of the most common forms that data assumes in the real world, it is not
the only type of distribution that we may encounter.

Figure 4 presents five common shapes of data distributions. In each case
the distribution is shown in its finite histogram form and in the theoretical
continuous form based on an infinite number of observations.

Figure 4a shows what is referred to as a rectangular or uniform distribu-
tion, in which each value of the variable occurs equally often. Interestingly, this
type of distribution is not as common as one might think. More often data
assumes an unequal distribution of occurrence; i.e., with certain values tending
to occur more frequently than others. However, one important example of a
rectangular distribution is the distribution of ages of the citizens in well-devel-
oped nations in which the birth and death rates have stabilized and are more
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or less equal to each other. In such a nation, the number of five-year-olds is
approximately the same as the number of ten-year-olds or the number of
twenty-year-olds or the number of any given age; until, or course, we reach the
upper age brackets where death due to aging begins to take its toll. But to that
point the distribution of ages is more or less rectangular in form.

The U-shaped distribution shown in Figure 4b reveals a polarization of
observed values for a given variable; either they tend to be very high or very
low, with relatively few intermediate values occurring among the set of
measured objects. An example of this type of data configuration is the
distribution of consumer purchase-interest ratings for a particular product.
Most people are either very favorably disposed to it, or they are turned off by
it, with relatively few having an intermediate degree of interest in the product.

The distribution shown in Figure 4c, looking much like half of a U-shaped
distribution, is often referred to as a J-shaped distribution. The one shown
actually looks like a backward J, but it could also occur in the reverse
direction with most of the observations piled up at the right instead of the left.
The distribution shown could be characteristic of a variable such as the
number of defects found in various batches of a quality controlled product.
Most batches would have zero defects, fewer would have one defect, fewer yet
would have two defects, even fewer three defects, and so on until the frequency
of batches with numerous defects approaches zero. Another example of this
type of reverse J-shaped distribution is the age distribution in a developing
country in which the number of births increases each year and the expected
longevity is short, resulting in more one-year-olds than two-year-olds, and
more two-year-olds than three-year-olds, etc.

The bell-shaped distribution shown in Figure 4d is perhaps the most
common of all distributions. The examples presented earlier in the chapter
were of this type, situations in which observed values of the variable become
increasingly more frequent at the intermediate values. Different bell-shaped
distributions may vary in their specific profile, but there is one such distribu-
tion that has a specific shape, with a precise mathematical definition, that will
be of special interest to us, for it is so pervasive in nature, and could well be
said to be the most important distribution in the field of statistical analysis,
and it is called the normal distribution. It is that distribution that we have
already seen three times—in Figures 24, 3, and 44 —and before the end of our
study we should expect to see it or refer to it nearly a hundred times more, and
its shape and characteristics will be as familiar to us as the multiplication
tables are to a grade schooler, so basic is it to statistical analysis.

Distributions that are not symmetrical in form, those that tail off either to
the right or the left, such as the J-shaped distribution, are referred to as skewed
distributions. The distribution shown in Figure 4e is an example of a distribu-
tion skewed to the right, the direction of the skew being the direction of the
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Figure 4 Common shapes of frequency distributions. Histograms and continuous
distributions shown side by side: (a) uniform, (b) U-shaped, (c) reverse J-shaped, (d)
bell-shaped, and (e) skewed right.
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distribution’s tail. It is typical of the distribution of scores on a very difficult
exam, or the incomes of a given population. In each case, low values of the
variable predominate, with relatively few instances of the higher values. A
mirror image of the distribution shown in Figure 4e, one that was skewed left,
would be typical of the distribution of scores on an easy examination, in which
most of the scores pile up at the upper end of the scale. These types of
distributions can be viewed as falling between the symmetrical bell-shaped
type and the extremely skewed J-shaped type.

The shapes introduced above—uniform, U-shaped, J-shaped, bell-shaped,
normal, skewed right, skewed left—are useful for summarizing an entire body
of data with a word or two, and extend the data reduction function of creating
a tabular frequency distribution.

7. Pie Charts

When we deal with qualitative variables such as political affiliation,
religion, race, occupation, etc., frequency distributions in the form of histo-
grams or frequency polygons are not quite appropriate, since the values of such
nominally scaled variables represent categories and have no logical order of
arrangement, as numerical values do. In such situations it is often convenient
to represent the frequency distribution in the form of a pie chart, a circular
figure with slices of varying size reflecting the relative frequencies of occurrence
of the values of the qualitative variable under study.

An example of a pie chart is shown in Figure 5. It is based on a frequency
distribution of the causes of 2,523 deaths in a given city in a given year. The
sizes of the slices in the pie chart were determined from the frequency
distribution shown in Table 3. The frequencies of the various causes of death
were first converted into percentages of the total, by dividing each by 2,523

and then these percentages were multiplied times 360° —which corresponds to
the total circle—to determine how much of the circle would be occupied by
each value of the variable. A “protractor” can then be used to measure and lay
down each angle in turn. '

As shown in Figure 5, it is customary to arrange the values of the variable
from the one most frequently occurring to the one least frequently occurring,
except for the “other” category which is placed last and contains a miscella-
neous grab-bag of values. Generally, it is advisable to list alternatives until the
“other” category is 5% or smaller, so as not to arouse curiosity as to what is
included in it.

The actual orientation of the pie chart (i.e., where the first category is
placed) is pretty much a matter of judgment and personal preference as to
what makes the most dramatic presentation.

Table 3 Frequency distribution of the causes of 2,523 deaths in a given
municipality in a given year.

Relative Portion of a
Cause of death Frequency frequency pie chart’s 360°
1. Heart disease 1,251 49.6% 178.6°
2. Cancer 527 20.9 75.2
3. Stroke 217 8.6 31.0
4. Accidents 134 53 19.1
5. Chronic obstructive
pulmonary disease 71 2.8 101
6. Pneumonia & flu 66 2.6 94
7. Diabetes 43 1.7 6.1
8. Liver disease 40 1.6 5.7
9. Arteriosclerosis 38 1.5 54
10. Suicide 33 13 4.7
11. Other 103 4.1 14.7
Totals; 2,523 100% 360°
Other
4.1%
Suicide
1.3%
Arteriosclerosis
1.5%
Liver disease
1.6%
Diabetes
1.7%
Pneumonia & flu
2.6%
Chronic obstructive
pulmonary disease
2.8% Accidents
5.3%

Figure 5 Pie chart of causes of death (see Table 3).




w4 PREQUENCY DISTRIBUTIONS
8. Concluding Comments

The creation of a frequency distribution for a set of data is usually the very
first analysis that we perform. It gives us a concise overview of the data that is
not possible from an examination of the unorganized observations. The shape
of the frequency distribution, which we found could vary widely, provides the
initial descriptive and interpretive summary of the data. In the following
chapters we will discuss further data reduction techniques and interpretations
based on the frequency distribution.

Chapter 4

o -

Central Tendency

1. Introduction

Although a frequency distribution reduces a large collection of data into a
relatively compact form, it would be highly desirable to further summarize the
frequency distribution itself. While we can use verbal expressions such as
“bell-shaped” or “skewed to the right” to describe the overall distribution of
scores, such descriptions say nothing about the specific numerical values of the
variable in question.

What would be beneficial would be a single summary value that would
suggest a typical or representative observation, a measure of central tendency,
or location as it is also called; that is, at which value do the observations “tend
to center,” or equivalently, where along the values of the variable in question
are the observations clustered or “located.” While such a measure of central
tendency, by itself, would necessarily sacrifice much of the information inher-
ent in the frequency distribution, it would nonetheless serve as a very concise
description of a body of data; and when used in conjunction with a frequency
distribution would provide a richer summary of the observations than either
data reduction technique itself.

In the following sections we will discuss the most useful measures of
central tendency, including their respective advantages and limitations.

2. The Mode

Since, as we have seen in the preceding sections, the observations in most
data distributions tend to cluster heavily about certain, values, one logical
measure of central tendency would be that value which occurs most frequently;
and that value is referred to as the modal value, or simply the mode.

For example, in the following data collection consisting of nine observa-
tions arranged in value from lowest to highest

912 15 15 15 16 16 20 26
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the modal value is 15, occurring three times, more frequently than any of the
other values. Also, it is important to remember that the mode is the value of
the variable occurring most often, and not the frequency associated with that
value.

When dealing with a distribution based on data grouped into intervals, the
mode is often taken as the midpoint or class mark of that interval containing
the highest frequency of observations. Alternatively, the interval itself could be
cited as the modal value. For example, if a grouped frequency distribution of
the heights of a set of corn stalks revealed that the 60 to 62 inch interval
contained the highest frequency of observations, the mode could be reported as
either 61 inches, or as the 6062 inch interval, whichever we prefer.

There are instances in which a data distribution will have two modal
values, characterized by two humps like the back of a camel. Such distributions
are referred to as bimodal, even though one of the two modal values may be
associated with a somewhat higher frequency than the other. Whenever we
confront a bimodal distribution we should immediately question the composi-
tion of the collection of measured objects. Chances are that two distinct
populations of objects, differing on the variable in question, are intermingled;
e.g., the distribution of heights of a mixture of males and females.

The chief advantage of using the mode as a measure of central tendency is
the ease with which it can be obtained, and its common sense interpretation.
However, its limited mathematical properties make it less than the ideal
measure of central tendency for more advanced analyses.

3. The Median

If we arrange a set of observations from lowest to highest in value, and
then single out the middle value, we have identified what is called the median
value, or simply the median, the value above and below which 50% of the
observations fall.

For example, in the following simple collection of nine observations

22 24 24 25 27 30 31 35 40

the median value is 27. If we are dealing with an even number of observations
instead of an odd number, as in the following collection of ten scores
22 24 24 25 27 30 31 35 40 47

then the median lies between the fifth and sixth values, midway between the
values of 27 and 30—namely, 28.5.
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In the case of a frequency distribution based on grouped data, the meflian
can be reported roughly as that interval in which the cumulative re!tivc
frequency reaches 50%, or as the midpoint of that interval, or, for a #ore
precise measurement, the median value can be determined by interpolation
within the said interval.

Aside from its common sense interpretation as a truly central value, the
most attractive feature of the median is its insensiflvity to the values of the
very extreme scores in a distribution, which are atypical and sometimes flukes.
For example, if the highest value in the set of ten scores listed in the preceding
paragraph were 85 instead of 47, the median would not be affected in the least.
The distribution of individual incomes is a good example of how the median,
because of its independence from the values of the extreme observations, is a
good indicator of central tendency. While most individuals have incomes
within a relatively narrow band, there is a minority who have exceptionally
high incomes, many times the typical value. Since the definition of the median
does not take into account the actual values of the extreme scores, it will not be
affected by such deviant data points. For this reason, the median is especially
appropriate as a measure of central tendency of a skewed distribution of data.
Its main limitation, like that of the mode, is that it does not have mathematical
properties that lend itself to more advanced analyses.

4. The Mean

The most important measure of central tendency, and one of the basic
building blocks of all statistical analysis, is the arithmetic mean, or simply the
mean. It is nothing more than the sum of a set of values, divided by the
number of values involved.

Consider, for example, the following set of seven observations

34456810

have

Summing the values and dividing by the number of values, we
P

- 3+4+4+5+6+8+10
7

40
Mean =

=57

As in the above example, we typically calculate a mean to one decimal point
beyond that occurring in the data itself, for it would be highly misleading as to
the precision of our original observations if we reported the mean as, say,
5.714286. :
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The mean will be recognized as equivalent to the popular concept of an

“average” of a set of numbers; more specifically, the arithmetic average. In

other uses, the term “average” is used loosely to mean typical or representa-
tive, or central tendency in a most general sense.

Since the mean is such a fundamental concept to statistical analysis, it is
useful to designate it in a shorthand form. The letter M is sometimes used to
denote the mean, or it may be subscripted to identify the variable in question;
for example, M, would indicate the mean of variable x, while M, would
signify the mean of variable y.

An alternative and more common notation for the mean of a variable x, is
X, which is read “x bar” or “the mean value of variable x.” By the same token,

J signifies the mean value of a variable y. With this notation we can define the
mean more concisely as

J_c_x1+x2+ et x,
n

where 7 is understood to be the number of observations in our data collection,
and x,, x,,..., x, are the various observations.

Historically, t.he capital letter S was used to stand for “sum of”’ which
allowed the even more compact definition

S(x.‘)

f=

where X, the mean of variable x, is shown to be the sum of the individual
observations— S(x,)—divided by the number of observations, n. However,
since the letter S signifies another important statistical concept, it has been
replaced with the capital Greek letter Sigma, designated =. Thus, the standard
mathematical definition of the mean becomes

_  2x;
X=— (1)

where Zx,; stands for the sum of the individual values of the variable x, n is the

number .of values in question, and ¥ is the resultant mean value of the
observations, as before.

The above formula can be made more explicit in the form

- i

X =

il x;
! @

THE MEAN 47

in which the range of the subscripts have been added to the summation sign.
We read it, “the mean of variable x is equal to the sum of the values x;, w ere
i ranges from 1 to n, that sum divided by n.” Typically, however, we will j
use the summation sign ¥ and understand implicitly the range of values being
summed. And yet other times, for the sake of simplicity, we will also drop the
subscript from x, and simply write X =2x/n.

The % notation is reserved for the mean of a sample of data. To
distinguish the mean of a population of observations we use the Greek letter
mu, designated u, and pronounced mew. Thus, both X and p signify a mean,
but X refers to a sample, while p refers to a population of observations. The
distinction will take on greater significance when we undertake topics of
inference, the drawing of conclusions about populations based on sample
observations.

Whether one prefers the verbal or the symbolic definition of the mean
makes no difference, so long as the concept is understood. In either case the
mean should be made an integral part of one’s intellectual hardware; for
hardly a topic will go by from now on that does not depend either directly or
indirectly on the mean, so important is it to the field of statistical analysis.

The major advantage of the mean over the mode and the median as a
measure of central tendency is that it takes into account the numerical value of
every single observation in the data distribution. It represents a balance point,
or center of gravity, in that the sum of the distances to the observations below
it, is equal to the sum of the distances to the observations above it. This
mathematical characteristic of the mean, as we will see, makes it a cornerstone
of statistical analysis.

Ironically, this'feature of the mean—its sensitivity to every numerical
value—becomes its chief drawback as a measure of central tendency in
situations where the data distribution is highly skewed, and when there are one
or two freaky “outliers” in the data. For example, the mean of the values 5, 6,
7, 8, and 9 is 7.0; while the mean for the set of values 5, 6, 7, 8, and 30 is 11.2,
the dramatic increase in the value of the mean being due to the single
exceptional score of 30. The median, on the other hand, uninfluenced by the
deviant value, remains at 7.

When a data distribution is basically symmetrical in form, the mode,
median, and mean will have very nearly the same value. In a skewed distribu-
tion the mean tends to get dragged foward the tail of the distribution, toward
those few exceptional values, as in the example of the preceding paragraph.
The median in such distributions will typically fall between the mode and the
mean. This relationship between the values of the mode, median, and mean for
symmetrical and skewed distributions is summarized in Figure 1.

Knowing only the values of the mean and the median of a data distribu-
tion, we can generally guess the shape of the distribution. If these measures of
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(a) Symmetrical
Mode
Median
Mean
(b) Skewed right
Wl
(c) Skewed left
S .
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I.sl.:.i:: 1 A comparison of the mode, median, and mean for distributions differing in

central tendency are approximately equal, we know that the distribution is
probably symmetrical in form. If the mean is /ess than the median, we know
that.the distribution is skewed to the left; i.c., a few low scores have dispro-
p?monately affected the mean. When the mean is higher than the median, the
distribution is skewed to the right, the mean being dragged in that direction by
a relatively few high scores.

for descriptive purposes, then, we would do well to report the mode,
.med1a'n, and mean when trying to characterize a distribution of data, for each
in their own way is a measure of central tendency, though reflecting different
features of the data. However, when we are dealing with roughly symmetrical
distributions, in which case the mode, median, and mean are more or less
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equal, and we are interested in making an inference about the central tendncy
of the population from which our sample observations have been dra L, we
should rely on the mean, for the mean is known to be a more efficient estithate,
in that for repeated samples of a given size the mean will show less fluctuation
in value than either the mode or the median. This should not be surprising
since the mean takes into account the information inherent in every single
observation, whereas the mode and median do not take advantage of the
numerical values of every single data point, wasting information as it were.

5. The Weighted Mean

Typically, every observation in a data collection has equal importance to
us. There are situations, however, in which a data collection is based on a set of
objects that differ in their importance for one reason or another. For example,
a student’s test scores are not equally important—quiz scores are less im-
portant than a midterm score, which in turn is less important than a final exam
score. Similarly, a marketer’s brand share in a large sales territory is more
important than its share in a small territory.

In such situations a straight-forward mean might be misleading. To
compensate for the varying importance of the observations, we can calculate a
weighted mean —more precisely, a mean based on weighted observations —in
which each observation is multiplied by its importance weight, and then
dividing the sum of these weighted observations by the sum of the weights. In
symbols, we have

%, = LW 3)

w

where X, is the weighted mean, w, is the importance weight associated with an
individual observation x;, Iw;x; is the sum of the products of the observations
multiplied by their respective weights, Xw; is the sum of'the Weights, and the
subscript i is implicitly understood to vary from 1 to n, the number of
observations in the data collection.

Consider, for example, the results of a poll that finds a particular refer-
endum is favored by 44%, 56%, 64%, and 51% of the prospective voters in a
city’s North, South, East, and West voting districts, respectively. The ordinary
mean of these values is 53.8%. If, however, we take into account the unequal
importance of the four voting districts based on the sizes of their voter
bases—2,500, 1,000, 400, and 2,000 in the North, South, East, and West
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districts, respectively—the weighted mean becomes

5 = 2,500(44)+1,000(56)+400(64) +2,000(51)

w 2,500 + 1,000+ 400 + 2,000 =49.8%

We find that the weighted mean of 49.8% is lower than the unweighted mean of
53.8%, due to the fact that the more important districts—those with a larger
voter base—were less in favor of the referendum than were the smaller
districts.

The above example is our first encounter with what can be considered a
multivariate analysis; namely, a set of objects (the voting districts) were
measured on two variables (referendum vote and size of voter base). Had there
been no systematic relationship between the two variables, the unweighted and
weighted means would have been equal. We will encounter the importance-
weighting concept again in later chapters.

6. The Mean of Grouped Data

The above weighting concept can also be used to approximate the mean of
a set of observations that have been arranged in a frequency distribution
consisting of grouped data. In such situations the midpoint of each interval, x/,
can be weighted by its corresponding frequency of occurrence, f:, to yield an
estimate of the mean were it calculated from the original ungrouped data; i.e.,
x=XYfx;/Lf, where = stands for “is approximately equal to,” and the
summation is across i =1,2,..., k intervals.

The reason the resulting mean will only be approximate in nature is that
by taking the midpoint of an interval as representative of the values falling
within it, we are assuming the data within the interval are uniformly distrib-
uted, which is usually not the case. In any event, with modern computing
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obtain an exact value of the mean.

7. Proportions

Proportions are of two types— quantity proportions and frequency pro-
portions. A quantity proportion represents the ratio, usually in decimal form,
of a sub-quantity to a total quantity. For example, the proportion of one’s
income that goes to taxes represents the ratio of the amount of income taken
by taxes to the rotal amount of income. '

The second type of proportion, the frequency proportion, represents the
ratio of a sub-frequency to a total frequency. For example, the proportion of a
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sample of patients with symptom 4, represents the ratio of the nwmber of
patients with the symptom to the fotal number of patients.

While we may not have been aware of it, a frequency proportion repre-
sents the mean of the 0 and 1 binary values attached to a dichotomous
variable. For example, if we let 0 and 1 stand for a “no” and “yes” vote,
respectively, on an issue, we might observe the following 15 votes:

100110100101000

By definition, the mean of these values is their sum divided by their number:
namely, 6,/15 or .40. This, of course, is exactly the same as the proportion of
“yes” votes.

Thinking of a proportion as the mean of a binary variable will be helpful
in generalizing many of the analyses of later chapters.

8. Arithmetic Operations and the Mean

How would you expect the mean of a set of scores to be affected if we
added a constant value to each of the original observations? What if we
subtracted a constant value from each of the scores? Or, if we multiplied or
divided the scores by a constant?

An illustration of the effects of these arithmetical operations on the mean,
for a sample set of five scores, is shown in Figure 2. The mean of the five given
scores—2, 3, 4, 5, and 6—is 4.0, and can be seen in Figure 2a.

In part b of the figure, after adding a constant value of 3 to each of the
original values, we see the mean of the new set of scores has changed to 7;
namely, the original mean value plus the added constant value (ie.,4+3=7).

In Figure 2¢ we see that subtracting a constant value of 5 from each of the

original scores towers the mean by €xactly that amount. The new mean is — 1.0
(ie,4-5=-1).

Multiplying the original scores by a constant value of 2 results in a new
mean of 8, two times as large as the original mean (i.e., 4 X2 = 8), as shown in
Figure 24.

Dividing the original scores by the constant value of 4 results in a new
mean of 1.0, which is the original mean divided by 4 (ie, 4+4=1), and is
shown in Figure 2e.

In summary, bypassing the relatively simple proofs, we can state the
following relationships between the mean of a set of scores and the mean of the
set after it has been transformed by various arithmetical operations. The letter
M stands for either a sample mean ¥ or a population mean y.
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(a) Original set . . S—
of five scores —3-2—-1 0 1 2 3 4 5 6 7 8 9 10 11 12
i
original mean
(b) Constant value 3 e o o o o
added to each
original score -3-2-1 0 1 2 3 4‘1 5 6 ; g§ 9 10 11 12
new mean
(c) Constant value 5 « o o o e

subtracted from each

original score -3-2-1 01 23 3 5 6 7 8 910 1113
4

(d) Each original score . . . . .
multiplied by the

constant value 2 -3-1-1 0 1 2 3 4‘1 5 6 7 ii S 10 11 12
: new mean
(¢} Each original score eovee
divided by the v -
constant value 4 -3-2-1 0 1 2 3 4‘1 5 6 7 8 910 1112
new mean

Figure 2 'The effects of various arithmetic operations on the mean of a set of data.

® Adding a constant value ¢ to each of a set of scores x results in a mean
which is equal to the original mean plus the constant value. In symbols,
M =M +c

* Subtracting a constant value ¢ from each of a set of scores x results in a
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9. Concluding Comments

The concept of central tendency, especially as measured by the arithmetic
mean, is one of the most fundamental concepts of all statistical analysis. Not
only does the mean serve as a data reduction technique, providing a summary
value for an entire distribution of data, but it will serve from now on as a
building block for the creation of additional concepts and techniques which
will help us further in the analysis and interpretation of our data collections.
At the end of our course of study we will be amazed at what has evolved out of
this simple concept we know as the mean.

mean which is equal to the original mean minus the constant value. In
symbols, M, _ =M —c

* Multiplying a constant value c times each of a set of scores x results in a
mean which is equal to the original mean times the constant value. In
symbols, M, = cM,

* Dividing a constant value ¢ into each of a set of scores x results in a
mean which is equal to the original mean divided by the constant value. In
symbols, M, , =M, /c

These fundamental relationships, important in themselves, will be very
useful in developing subsequent statistical concepts. Learn them well.
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Chapter 5

Variation

1. Introduction

A measure of central tendency is not enough to summarize a set of
observations. To more fully describe a data distribution we also need a
summary measure of the variation or dispersion of the observed values; i.e., the
extent to which the observations differ among themselves in value.

The need for such a measure of variation is evident from the distributions
shown in Figure 1. The distributions shown in part a of the figure have the
same central tendency, or location, but differ markedly in their variation; those
in part b differ in central tendency, but have the same variation; while those
shown in part ¢ differ both in variation and central tendency. So just as we
have the mean as a measure of central tendency, we need a summary measure
of the variation of a distribution of data.

2. The Range

Perhaps the simplest and at the same time the crudest measure of variation
is the range, the difference between the highest and lowest observed value in a
collection of data.

Consider, for example, the following set of ten scores:

7 10 12 15 16 16 19 20 25 29

The range for this set of data is 22, the difference between the extreme values
of 29 and 7. We could summarize this collection of observations by stating that
it has a mean of 16.9 and a range of 22, extending from 7 to 29; a description
which is much more comprehensive than reporting the mean alone.

While the range is an easy measure to determine, easily understood, and a
seemingly satisfactory measure of the variation of a set of scores, it suffers
from the same weakness as the median; namely, it does not take into account

i

()

Figure 1 Distributions which have (a) the same central .tendency but c:'liﬂ'crcnt varia-
tion, (b) different central tendency but the same variation, and (c) different central

tendency and variation.

the numerical value of each and every observation. It is based entirely on two
values, the highest and the lowest. The shortcoming of the range as a compre-
hensive measure of variation will be evident from a comparison of the above

distribution with the following one:
714 1515 16 16 17 18 22 29

This distribution has exactly the same range as that in the above paragraph,
but clearly this set of values, taken as a whole, varies less about the mean t.hap
the previous example. Yet, the range, 22 in both instances, does not reflect this

facet of the data. . L
Because of this insensitivity of the range to the “internal” variation of a

distribution of data, it should be used only as the roughest measure of

variability, primarily to provide information about the values beyond which no
observations fall. This, in itself, is very useful information, whatever other

limitations the range may have.
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3. Mean Absolute Deviation

The greater the variation of a set of scores, the greater will be the
deviations of the values from the mean. Consequently, a logical measure of
variation would be the average value of those deviations. However, it will be
recalled that the mean is the center of gravity, or balance point, of a set of
observations, in that the sum of the distances or deviations from the mean of
those values falling above it equals the sum of the deviations from the mean
of those valua_ falling below it. Since the deviations from the mean, x, - X,
always sum to zero, their average value will also always equal zero, leaving us
no information about the sizes of the individual deviations.

One way to get around the fact that the deviations from the mean sum to
zero, is to strip the deviations of their positive and negative signs, and then
take the arithmetic mean of these absolute values of the deviations. Such a
measure of variation is known as the average absolute deviation or mean
absolute deviation (M.A.D.). In symbols, we have

lei-’—‘-l

M.A.D.=—n——-— (1)

where |x, — X| signifies the absolute value of a deviation from the mean, and
the summation is across the i =1,2,..., n observations in the data set. .

As a simple illustration of the calculations of the mean absolute deviation,
consider the following set of five scores that have a mean value of 9:

5691114

Their respective deviations from the mean are:
-4 -3 0 +2 +5

As expected, the sum of the positive deviations from the mean (+7) balances
the sum of the negative deviations from the mean (— 7). However, in calculat-
ing the mean absolute deviation we disregard the positive and negative signs of
the deviations, averaging instead their absolute values. Summing 4, 3, 0, 2, and
S yields a total of 14, which when divided by n = 5, the number of observations
in the data set, results in a mean absolute deviation of 2.8.

The logic of the mean absolute deviation as a measure of variation cannot
be faulted, but how do we interpret it? While we can easily visualize the
meaning of the range of a given distribution of data, how do we visualize the
meaning of an average deviation. There is the further complication that, due to
its reliance on absolute values, it cannot be used in certain mathematical

oPerations necessary for the development of more advanced statistical tech-
niques. ‘
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Nonetheless, the rationale behind the average deviation as a measur ipf
variation is sound enough, and in the following two sections we will see how a
minor variation on its theme will provide us with two much more usg.ll
measures of dispersion, measures that we will use throughout our subsequent
study of statistical methods.

4. The Variance

An alternative to dealing with the absolute values of the deviations from
the mean is to square each deviation, thereby yielding all positive quantities.
The mean of these squared deviations could then be determined. Rather than
having an average deviation we would have an gverage squared deviation. This
very important measure of variation is called the variance, and for a popula-
tion of observations we can define it concisely as follows:

Sum of the squared deviations from the mean
Number of observations

Population Variance =

In symbolic form, a population variation is denoted with the square of the
lower case Greek letter sigma, o2, and can be read “sigma squared” or “the
variance of variable x.” In notational form, the above definition of a popula-
tion variance becomes

2 Z(xi-l")z
. of=—"7pn" (2)

where o2 is the variance, x; — p is the deviation of a given observation from
the population mean, N is the number of observations in the data set, and the
summation X is across the i =1,2,..., N observations. We could subscript the
variance notation as follows, a2, to signify that we are referring to the variance
of variable x, but that is understood in the absence of a subscript. If the
variance refers to other than a variable x then it will be subscripted.

The above formula is appropriate for defining the variance of a population
of observations. However, if we apply it to a sample of observations in an
attempt to estimate the variance of the parent population from which the
sample was drawn, we will discover that it is a biased estimate—it tends to
underestimate the population variance. That is, if repeated samples were drawn
from the population, and the variance calculated for each according to the
above formula using the sample mean X instead of the population mean g, the
average of these variances would be somewhat lower than the true value of
the population variance, were we able to measure every single member of it.
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An adequate adjustment to the formula to avoid this bias is to divide the
sum of squared deviations not by the number of observations in the sample,
but by one less than the number of observations. We then have an unbiased
estimate of a population variance based on a sample of observations, and we
define it as follows:

Sum of the squared deviations from the sample mean
Number of observations less one

Sample Variance =

The sample estimate of a population variance is denoted s2, and is defined
symbolically as

2_ E(xi_’?)z

) (3)
where the summation is across all n observations in the sample. Notice that we
have used n to designate the size of a sample, and N for the size of a
population. For formula (3) to yield an unbiased estimate of a population
variance, we must assume that the population is infinite in size, or for practical
purposes that N is much larger than n—say, at least fifty times as large.

So, when we are interested in estimating the variance of a population of
values based on a random sample from that population, we will use formula
(3). If we are merely interested in describing a body of data that we define as
our population of interest, with no intent of generalizing to a larger parent
universe, then we will use formula (2).

It should be apparent that as the size of our sample of data increases, the
effect of dividing by the number of observations as opposed to one less than
the number of observations becomes slight. Still, for theoretical purposes, the
distinction between the two variances should be kept in mind.

5. The Standard Deviation

- Since the variance is in units of measurement that are squared, as well as
for other reasons that will gradually become apparent, it is convenient to take
the square root of the variance and define a quantity known as the standard
deviation:

Standard Deviation = \Variance

If we are interested in the standard deviation of a population of observations, we
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will take the square root of the population variance. If, on the other hgnd, w
are interested in estimating the standard deviation of a population we Will take
the square root of the sample variance, the unbiased estimate of that popula
tion parameter.

In symbols, the standard deviation of a population of values is given by

Z(xi"l")z

N (4

In turn, the unbiased sample estimate of the population standard deviation i

given by
s=1’ Z(:'_—li) (5

The standard deviation formulas (4) and (5) will be recognized as the squar
roots of the variance formulas (2) and (3), respectively, as they should b
definition.

Since the standard deviation equals the “square root” of the “mean” ¢
the “squared deviations” it is also known as the root mean square value of
data collection, or simply as the RMS value. This terminology is especiall
common in the engineering fields and physical sciences.

As an example of the calculation of the standard deviation, consider th
observations

121 154 14.1 144

which represent the widths in centimeters of four skulls found in an archeolog
cal dig. Subtracting their mean value of 14.0 from each, squaring the resultar
deviations, summing them, dividing by n —1=3, and then taking the squai
root, we have . .

(12.1-14.0)>+ (15.4— 14.0)* + (14.1 - 14.0)* + (14.4 - 14.0)’
s -=

4-1
= ‘/ % =1.38 cm'

It should be noted that the standard deviation is in units corresponding 1
those of the variable we are measuring, centimeters in this instance.
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Assuming the four studied skulls were a random sample of a larger
population (which is probably not tenable), then the standard deviation of
s =1.38 would be an unbiased estimate of the variation of the larger popula-
tion of skulls. If we had wanted to treat the four skulls as a population in itself,
then we would divide by N=4 in the above expression, instead of by
n—1=3. So doing, we obtain a standard deviation of ¢ =1.20 cm for the set
of four skulls, when treated as a population.

When data is arranged in a frequency distribution consisting of intervals
of values of the variable in question, the variance and standard deviation of the
original ungrouped data can be approximated by taking the midpoint of each
interval as representative of the values falling within them, and then weighting
their deviations from the mean by their corresponding frequency of occur-
rence. However, as pointed out in the discussion of the calculation of an
approximate mean from grouped data, the procedure is not recommended,
since modern computing facilities make it easy enough to obtain exact values
from the original ungrouped data.

6. Variation of the Normal Distribution

While both the variance and the standard deviation have wide applications
in statistical analysis, we will concentrate initially on the standard deviation.
The applications of the variance will be encountered in later chapters. Though
we now understand the simple manner in which the standard deviation is
calculated, so far we know little of how to interpret it. What does a standard
deviation of 1.2 mean, or one of 23, or 955, or whatever else we might calculate
from a set of data. At the very least we can surmise that the greater the value
of the standard deviation the greater the variation of scores about the mean.
This follows from the fact that the standard deviation is based on the
deviations of the observations from the mean. For example, if two distributions
each have a mean of 100, but one has a standard deviation of 5 while the other
has a standard deviation of 12, we can safely conclude that the distribution
with the larger standard deviation has'a wider dispersion of scores.

We can be more specific in our interpretation of a standard deviation
provided our distribution of data is of a well-defined form. For our purposes
we will be primarily interested in the normal distribution, the characteristic
bell-shaped curve that we have been alerted to from the very start. Although
the curve representing the normal distribution is defined by a precise mathe-
matical equation, we can do without it for our purposes. Rather, we will
recognize the normal distribution by its graphical representation, as shown in
Figure 2, and by its special characteristics vis-a-vis its mean and standard
deviation.
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(a) (b)
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Figure 2 Areas under the normal curve for various standard deviations from the
mean,
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It will be recalled that the normal distribution is theoretical in nature,
based on an infinite number of observations. But we also learned that we can
view the area under the curve as representing 100% of the observations, and
that to determine the relative frequency of occurrence of values within any
given interval we merely need to measure the area under the curve in that
interval. It is in this respect that the standard deviation takes on meaning; for
we can determine the percentage of observations which fall between the mean and
any other value, when the distance is measured in standard deviations.

For example, in Figure 2a we see that 34% of the total area under the
curve occurs between the mean and a value which is one standard deviation
above the mean. Since the curve is symmetrical it follows that an additional
34% of the area occurs between the mean and a value one standard deviation
below the mean; which leads us to a conclusion worth remembering, that 68%
of the values occurring in a normal distribution fall within an interval
extending from one standard deviation below the mean to one standard
deviation above the mean. For example, if we had a distribution wi
observations to fall between a value of 22 and 28 (i.e., 25+ 3). That is, if the
scores were distributed normally. If the scores were distributed, say, rectangu-
larly, we would not expect these percentages to hold. But it is in this respect
that the normal distribution is so important, since so many observations-we
make upon the world are in fact normally distributed, or very nearly so. And
in the next chapters we will see that the normal distribution has theoretical
significance even beyond the fact that empirical data often follow a normal
distribution.

We see further in Figure 25 that 2.3% of the observations in a normal
distribution fall beyond a value that is two standard deviations above the
mean. In total, then, just over 95% of the scores (95.4%) occur within an
interval extending from a value two standard deviations below the mean to a
value which is two standard deviations above the mean. For example, if a
normally distributed set of data has a mean of 75 and a standard deviation of
12, we would expect about 95% of the observations to fall between the values
of 51 and 99 (i.e., 75+2X12). :

While the theoretical normal distribution extends on to infinity both above
and below the mean, we can see from Figure 2¢ that virtually 100% of the area
under the curve occurs within three standard deviations on either side of the
mean. Only a small fraction of a percent of the observations occur beyond
these extreme values. This too is a worthy piece of information to remember,

_ for it often provides us with a quick method for roughly estimating the size of

the standard deviation when all we know is the range of the distribution. Since
six standard deviations—three above the mean, and three below—encompass
virtnally 100%of the observations, we could divide the range of a distribution,
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which appeared to be roughly normal in shape, by six.and get an estimate of
the size of the standard deviation. For example, if such a distribution had a
mean of 200 and a range of 150, we would estimate the standard deviation as
being about 25 (i.e., 150+ 6). If our estimate is good we will expect in turn that
about 68% of the observations would fall between 175 and 225 (ie., 200+1X
25), and about 95% would occur between 150 and 250 (i.e., 200 +2 X 25). Parts
d through h of Figure 2 present other important characteristics of the normal
distribution that are worth noting.

We see, then, that the standard deviation does take on a tangible meaning
when interpreted with respect to a normal distribution. This would not be of
great significance if the normal distribution were only a sometime thing, but as
we have stressed repeatedly it is everpresent in every field of study. And even
when a distribution departs from normality, provided it is not U-shaped or
extremely skewed, the percentages we have observed above are still fairly
accurate descriptions.of the data’s dispersion.

7. Standardized 7 Scores

By now it is clear that an object’s value on a variable, in and of itself, has
no meaning as to its relative location in the distribution of observed values.
For example, to know that someone scored 115 on a test would be impossible
to interpret unless we knew the mean of the distribution of scores. But even if
we knew the mean, say it were 100, a score of 115 still could not be interpreted
beyond observing that it fell above the mean. To know how far above the
mean, we would also need to know the standard deviation of the distribution;
i.e., to what extent do the scores vary about the mean. If the standard deviation
of the distribution were 5 score units, a score of 115 would have quite a
different meaning than if the standard deviation were 15 score units. In the
first instance, a score of 115 would be three standard deviations above the
mean, while in the second instance it would be only one standard deviation
above the mean.

Knowing that the distributions were normal in form, we could further
interpret the scores in terms of what percent of the total number of observa-
tions fall below or above the given score. Although real-life data distributions,
due to their finite size, can never be perfectly normal in form, the approxima-
tion is often close enough to allow us to use the theoretical normal distribution
as a model for interpreting empirical populations of data.

- To identify the relative location of an observed value in a data distribu-
tion, then, we need to know not only its deviation from the mean, but that
deviation must be translated into standard deviations. The manner in which we
can transform an observed value into a new value which expresses how many
standard deviations it departs from the mean, is relatively simple. We first




Chapter 9

Hypothesis Testing

1. Introduction

We have seen that one approach to the problem of statistical inference is
the direct estimation of population parameters from sample observations—
either as point estimates or interval estimates. In this section we will consider
an alternative approach, one that is indirect in nature; i.e., hypothesis testing.
Rather than using our sample observations to derive statistics which are
approximations of the population parameter in question, we will use our
sample statistics to support or discredit a priori hypotheses, or speculations,
about the true value of the population parameter.

The hypotheses about the population parameters that we wish to test can
be based either on prior observations or on theoretical grounds. Whatever the
basis for the hypothesis, our sample observations will be used to test the
likelihood or tenability of its being true. If it is found to be untenable, from a
probability point of view, then we are forced to believe in an alternative
hypothesis. But just as we cannot be 100 percent sure with regard to our
interval estimates of a parameter, neither can we be absolutely certain of our
conclusions with regard to the truth or falsity of our tested hypotheses. We can
be 90 percent sure, 95 percent sure, 99 percent sure, and so on, but never 100
percent sure. With this in mind let us begin our discussion of hypothesis testing
by considering the various types of hypotheses in which we might be inter-
ested.

2. Types of Hypotheses Sets

The most common approach to hypothesis testing is to establish a set of
two mutually exclusive and exhaustive hypotheses about the true value of the
parameter in question. Then, our sample statistics will be used to support one
or the other of the hypothesized alternatives.
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Exhaustive hypotheses sets. A researcher might be interested in mpng th
hypothesis that the mean weight loss from a particular three-week dipt is 1(
pounds. We designate this working or “null” hypothesis as H,, and wTe

H,: p =10 pounds

The alternative to this hypothesis, which we designate H,, is that the mea
weight loss is not equal to 10 pounds, and we write

H,: p#10 pounds

where # is the symbol for “is not equal to.” These two hypotheses, ther
cover all possibilities, for either the true weight loss due to the diet is equal t
10 pounds (H,) or it is not (H,), and therefore can be referred to as a
exhaustive hypotheses set.

To be perfectly general, we can again let 6 stand for any particul:
parameter we wish—whether it be a mean, a difference between two means,
mean difference of paired measures, a proportion, a difference between tw
proportions, etc.—and then our hypotheses set can be expressed

Hy 6=a
H:0+a

where a is some specified value. ' .
Truncated hypotheses sets. The hypotheses set outlined above is not t
only kind in which we might be interested. There are some situations in whi

the hypotheses set
Hy:0=a
H:6<a

is more meaningful, where < is the symbol for “is less than.” That is, if t
hypothesis = a is not true then the only alternative is that 8 < a. But here"
might object that while these two alternatives are mutually exclusive, they :
not exhaustive, since we have not admitted the possibility 8 > a, that 6
greater than a. And this is a crucial point, for when using such a truncated
curtailed or one-sided hypotheses set we must be absolutely certain, usually
logical grounds, that the third and omitted possibility has a zero probability
occurrence. We cannot use an exhaustive hypotheses set such as

Hy 0za
Hi:0<a
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since we have no idea what the sampling distribution for H,: 8 > a looks like if
we admit the possibility that § > a. And it is the H, sampling distribution upon
which the theory of our test rests. '

We might use a truncated or one-sided hypotheses set, for example, when
evaluating the breakage level of a product shipped with additional packing
material. If the breakage rate is not the same as that which occurred with the
old packing technique (H,: pu=a), then it must be lower (H,: p<a). On
purely logical grounds we can rule out the possibility that the breakage rate
could be higher. -

Of course there is another truncated hypotheses set possible, which is
simply a variation of the preceding one, namely

H, 8=a
H:0>a

In this type of situation, the alternative to 8 = a is 8 > a, and we rule out the
possibility that 8 < a. For example, if we revise a billboard advertisement by
increasing the size of the print with which the brand name appears, we can
safely assume that the percentage of consumers recalling the brand name will
either be unchanged (Hj: 8 = a) or it will be higher (H,: 8 > a), where a is a
level of recall for the original version of the billboard.

Whether we use an exhaustive or truncated hypotheses set will be dictated
by the nature of the particular problem; that is, which alternatives are possible.
The importance of the distinction between these types of hypotheses sets will
become more apparent in the following sections where we will consider the
techniques for choosing among the alternative hypotheses. Which type of
hypotheses set we choose is a logical decision, which hypothesis in the set we
eventually believe is a statistical question.

3. Test of a Mean

Suppose a municipality wants to test the hypothesis that a particular
model school bus averages 20 miles per gallon of gasoline. The hypotheses set
is

Hy: p=20 mpg
H,: p+20 mpg

Our task is to test the credibility of H,, vs. H,.
Since we cannot realistically test every single bus that came off the
assembly line, we must test a sample of buses of the particular model of
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interest. The mean gas mileage X of this sample would then be used to ddcide
the credibility of the hypothesis that u = 20. What if we obtained a mean §alue
of X =21, would the hypothesis of ¢ = 20 be credible? What if we obtairied a
sample mean of X = 22? Or X =167

By now we realize that to answer these questions we need additional
information—namely, characteristics of the sampling distribution of the mean
X; which, as we have learned, is dependent on the size of the sample n, and the
shape and standard deviation ¢ of the population of values which was
sampled. Knowing the population standard deviation o and the size of the
sample n, we can easily determine the standard error of the sampling distribu-
tion of the mean using

o
O, = —

=V

Now if we further know that the sampled population is normally distributed,
we will also know that the sampling distribution of X is normally distributed.
Therefore, we can express our observed sample mean X as a deviation from the
hypothesized mean g in standard error units; namely

z=£:£’..=x_" (1)

O- [+

X —

Vn

However, if we do not know the value of the population standard deviation o,
which we need to calculate the standard error of the mean o5, then we must use
the sample standard deviation s as a substitute estimate. Qur observed sample
mean X can then be expressed as a deviation from the hypothesized population
mean p in estimated standard error units; namely

XTp_X—p

z= Sy = s

‘/; « k)

where = is the symbol for “is approximately equal to.” So long as our sample
size n is sufficiently large, say greater than thirty, we can be confident that the
above z will be very nearly normally distributed, and approximately equal to
the value which would be obtained if we knew the value of o.

Returning, then, to our example, let us assume that we test n =100 buses
and obtain a mean mileage figure of X =19.1 mpg. Let us also assume, for the
time being, that we know the population standard deviation to be o =3 mpg.
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We can then calculate the standard error of the mean as

.3 e 3mpg
*=Vn " Vi

Next, we can express the observed mean X¥=19.1 as a .deviation from the
hypothesized value p = 20.0, expressing it as a normal deviate

Z—p_19.1-20.0

=-3.00
o 3

F4

In other words, our sample mean of X =19.1 deviates from thg l"xypc?thesized

value of p = 20.0 by three standard errors of the mean. This deviation is shown
aphically in Figure 1.

& p’I’he question we must ask is whether it is likely that we would get suc:h a

deviant sample mean X if in fact the true population value were p = 20.0. I.f it is

too unlikely, then we will tend to disbelieve the hypothesis. But what is our

...iherefore we reject
the hypothesis that p =20

...if in fact
this were the
population mean...

It is unlikely that
we would get a sample
mean of this value...

=i

Figure 1 The deviation of a sample mean X =19.1 from the hypothesized mean
u=20.
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standard for “ unlikely.” By convention, a probability less than .05 (1 charce in
20), or less than .01 (1 chance in 100), is usually considered an unlikely &ent.
In other situations we may want to establish either a more stringent or a less
stringent criterion for what we consider an unlikely event under the condition
that H,, is true, but in most instances .05 and .01 are accepted standards.

Significance levels. The particular probability that we use as our criterion
for an unlikely outcome, supposing that our working hypothesis H, is true, is
referred to as the significance level of our statistical test and is designated with
the Greek letter alpha, . It is essential that we stipulate a prior to conducting
our statistical test, for to choose one after the data has been analyzed would be
less than objective. In many research studies “ p values” are reported, signify-
ing the after-the-fact probability of obtaining the test statistic in question,
given that the null hypothesis were true. While such information is useful, it is
not a substitute for prespecifying a, our criterion for rejecting the null
hypothesis. For if we do not specify beforehand our standard for an unlikely
event, then we will be tempted to decide after the fact, which is not a
“well-defined” procedure. It would be like bragging about the number of fish
we caught at a particular fishing hole, without first having specified our
criterion for what would be a good catch.

Three common significance levels (a=.01, «=.05, and a=.10) are shown
in Figure 2. The extreme values of the normal distribution corresponding to
these probabilities are designated by the shaded areas, and are referred to as
the critical regions, or rejection regions, for our test of the hypothesis H,.

It will be further noted in Figure 2 that the probability corresponding to
the various significance levels can either be split between the two tails of the
distribution, or placed all in one tail. If the probability of an unlikely outcome
is divided between the two tails of the distribution, as in the left parts of Figure
2, we refer to our statistical test as a two-tailed or two-sided test. If, however,
we are dealing with a truncated hypotheses set in which we assume that any
departure from the H, hypothesis must be in a particular direction, then we
will choose to put the entire probability of an unlikely outcome in one tail or
the other of the distribution, as shown in parts b, d, and f of Figure 2, and we
call this type of test a one-tailed or one-sided test. £

Compare, for example, the value of z needed to reach the critical region
for a significance level of a=.05 when we are dealing with a two-tailed vs. a
one-tailed test. For a two-tailed test, a deviation from the mean beyond
z =1.96 standard errors will occur by chance 5% of the time. For a one-tailed
test, a deviation of only z =1.65 standard errors from the mean, in a given
direction, will occur by chance 5% of the time. For a significance level a = .01,
a value of z greater than 2.58 vs. 2.33 is needed to reach the rejection region
for a two-tailed vs. one-tailed test, respectively, as shown in parts e and S of
Figure 2. Of course, the 2’s reported above are their absolute values.
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(a) a=.10 (2-tailed test) (b) a=.10 (1-tailed test) ' —I

—=1.65 0 1.65 . 0 128

() a=.05 (2-tailed test) (d) a=.05 (I-tailed test)

~1.9 0 1.96 z 0 165

(e) a=.01 (2-1ailed test)

{a =005 {a=.005
™ /
—2.58 0 2.58

Figure 2 The most commonly used significance levels a, and their correspondin
critical regions (when o is known or sample size is large). P 8

In our bus gas mileage example, assuming we had specified beforehand an
a=.05 significance level for judging the hypotheses Hy: p = 20, our observed
sample mean X =19.1, which deviates from p = 20 by 3 standard errors, can be
considered an unlikely outcome if indeed the hypothesis p =20 were true.
Rather than believe that we have simply witnessed a chance deviation from
# =20 due to sampling error, we prefer to disbelieve the hypothesis that
#=20. In “rejecting” the hypothesis H,: p=20.0, we are “accepting” the
alternative hypothesis H,: p#20.0. We use the terminology “reject” and
“accept” very guardedly, for we recognize that our conclusions are based on
probabilities, therefore “believe” and “disbelieve” might be more appropriate
terminology, suggesting that we might be wrong.

If we had not been provided with the population standard deviation o,
from which we calculated o;, we would have had to use the sample standard
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’,

deviation s in its place, and estimate the standard error of the mean as ',-‘ =
s/vn . Suppose, for example, that the sample standard deviation were s =43.2.
The estimated standard error of the mean would then be s;=s/Vh =
3.2/@ =32, and we would have

_¥-p_191-200 _
= .32

X

-2.81

However, since we have estimated o; with s, this test and the corresponding
significance levels will only be approximate in nature. Recognizing this, our
conclusion is the same as above. Since z = —2.81 is beyond the value z = —1.96
needed to enter the critical region for a=.05, we must reject the hypothesis
that p=20. That is, rather than believe our sample mean x=19.1 was a
“fluke” from a population with p =20, we prefer, rather, to disbelieve that
= 20. Consequently, we place more credence in the alternative hypothesis
that g % 20. We do not know the exact value of p but we are fairly confident
that it is not 20.

Small sample technique. In situations involving a small sample from a
normal population with an unknown standard deviation ¢, we can use Student’s
t variable

X-p_XxX—p (2)

to exactly test hypotheses about population means. Associated with the ¢ ratio
are degrees of freedom df =n —1, as discussed in the Parameter Estimation
chapter.

Suppose, in the preceding example, we had tested only n =10 buses and
obtained a mean mileage figure of X =212 with a standard deviation of
s = 3.4. The estimated standard error of the mean is then s; = 3.4/Y10 =1.08.
We then calculate ¢ as « 3

_X-p_212-200
S 1.08

t =111

with degrees of freedom df =9. We look in Appendix Table IV and find that
for df =9, a ¢ of 2.26 is required before we enter the area of an unlikely event
for a significance level of a=.05. In other words, our value of ¢ =1.11 could
well have happened by chance alone if in fact the hypothesis p = 20.0 were
true. Figure 3 shows the relative location of ¢ =1.11. Consequently, we will not

0
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-2.26 0 11 2.26

200 212

Figure 3 The relative location of ¢ =1.11 (df = 9).

reject that hypothesis; we do not have enough evidence to discredit it. We
never “accept” H,,, only refuse to reject it.

The preceding examples demonstrate the probabilistic foundations of our
conclusions with regard to the believability of the alternative hypotheses that
we are testing. As such, we cannot be 100 percent certain that we have reached
the correct conclusion. In the following section we will consider the types of
errors we are liable to make.

4. Type I and Type II Errors

In the American system of justice an accused person is assumed to be
innocent until proven guilty. We could express these alternatives as hypothe-
ses:

H,: Innocent
H,: Not innocent (i.e., guilty)

Now just as with the earlier statistical hypotheses, we as a jury might come to
believe either of these alternatives. But since we base our conclusions only on
sample evidence, we are liable to make mistakes in our judgments. For
instance, we could conclude that the accused person is guilty when in fact they
are innocent; or we could conclude that the person is innocent when in fact
they are guilty. These two types of errors are shown in Table 1a, along with 'the
two possible correct conclusions—acquitting an innocent person and convict-

ing a guilty one.
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In the case of deciding between statistical hypotheses, analogous gypes c
errors can arise. If, for example, we have the hypotheses

Hy:p=a
H:p+a

where a is some specified value, we could conclude that H, is false when it is i)
fact true; or, on the other hand, we could Jfail to.reject H, when in fact it i
Jfalse. These two types of errors are referred to as type I and type II errors
respectively, and are shown in Table 1 along with the two correct conclusion:
—not rejecting H,, when it is true, and concluding that it is false when it i
false.

The probability of committing a type I error—rejecting H,, when it is true

—is easy enough to determine. It is simply equal to the significance level o

which we use as our criterion for Judging whether our sample statistic deviates
an unlikely amount from the hypothesized value. For example, if our hypothe-
sis Hy: p=aq is, actually true, there will be a certain number of instances in
which our sample mean X deviates more than 1.96 standard errors from it; to
be more specific, the probability of occurrence of such a happening is a=.05.
We will be less likely to commit a type I error if we have a more stringent
significance level, say a =01, for then we are even more unlikely to obtain
such a deviant result when in fact H, is true,

It is not such an easy matter to determine the probability of committing a
type II error—ie., concluding that H, is true when in fact it is false. The
probability of making a type II error, which we designate with the Greek letter
beta, B, depends on a number of factors, including (1) the true value of the
parameter in question; (2) the significance level @ we use to evaluate our
working hypothesis H, and whether we use a one-tailed or two-tailed test; (3)
the standard deviation o of the sampled population; and (4) the size of our

Table1 Outcomes of (a) a jury trial, and (b) a statistical test of an hypothesis H,.

(a) Jury Trial (b) Test of an hypothesis H,
True state of affairs . True state of affairs
Jury Conclusion of
verdict Innocent  Guilty statistical test H, is true Hy is false
Correct Hy is Correct
Innocent | judgment | Error not rejected conclusion | Type II error
Correct H, is Correct
Guilty Error judgment rejected Type Lerror | conclusion
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Table Il Normal Distribution
The tabled entries represent the proportion p of area
under the normal curve above the indicated values of
z. (Example: .0694 or 6.94% of the area is above
z =] .48). For negative values of z, the tabled entries

Table IV Student’s ¢ Distribution
For various degrees of freedom (df), the tabled
entries represent the critical values of ¢ above which
a specified proportion p of the ¢ distribution falls.
(Example: For df =9, a ¢ of 2.262 is surpassed by

represent the area less than — z. (Example: .3015 or 2 .025 or 2.5% of the total distribution). By symmetry,
30.15% of the area is beneath z = —.52). 5 negative values of ¢ cut off equal areas p in the left
Second decimal Slace. T tail of the distribution. Double the p for two-tailed
ccima’ prace of z probabilities.
z | 00 01 02 03 04 05 06 07 .08 .09 RO T )
0.0 [ .5000 .4960 .4920 .4880 .4840 .4801 4761 4721 .4681 4641 df BT 05 025 o 005
0.1 | 4602 .4562 .4522 4483 4443 4404 4364 4325 4286 .4247 -
02| .4207 4168 4120 409 4052 4013 3974 3936 3897 3850 ) 38 o 12708 Py S
03| .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483 3 1.638 2353 3.182 4.541 5.841
0.4 | 3446 3409 3372 3336 .3300 .3264 3228 3192 .3156 .3121 4 1.533 2132 2776 3.747 4.604
5 1.476 2.015 257 3.365 4.032
0.5 | .3085 .3050 .3015 .2981 .2946 .2912 2877 .2843 .2810 .2776
0.6 | 2743 2709 .2676 2643 2611 2578 2546 .2514 2483 2451 3 }:‘1“5’ }g;g ;;‘g ;;;g ;zg;
0.7 | 2420 2389 2358 2327 2297 .2266 .2236 2206 .2177 2148 8 1397 1360 2306 589 3355
0.8 | 2119 .2090 .2061 .2033 2005 .1977 .1949 .1922 .1894 .1867 9 1383 1833 2262 2891 3250
09| .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611 10 1372 1.812 2228 2764 3.169
10 | .1587 1562 .1539 .1515 .1492 .1469 .1446 .1423 1401 .1379 11 1.363 1.796 2.201 27118 3.106
11| .1357 1335 1314 .1292 1271 1251 .1230 .1210 .1190 .1170 12 1356 1782 2.179 2.681 3.055
12| .1151 1131 1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985 }3 }gffs’ i;g} gij‘s’ gggg ggg
1.3 | 0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823 1 1341 1753 3131 5602 5047
14 | 0808 .0793 .0778 .0764 .0749 0735 0721 .0708 .0694 0681
16 1.337 1.746 2.120 2.583 2.921
1.5 | 0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559 17 1.333 1.740 2110 2.567 2.898
1.6 | 0548 0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 0455 18 1.330 1.734 2.101 2.552 2.878
1.7 | .0446 0436 .0427 0418 .0409 .0401 .0392 .0384 .0375 .0367 19 1.328 1.729 2.093 2539 2.861
1.8 [ .0359 0351 .0344 0336 .0329 0322 .0314 .0307 .0301 .0294 20 1.325 1.725 2.086 2.528 2.845
1.9 | .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 0239 .0233 21 1323 1721 2.080 2,518 2.831
22 v 1.321 1.717 2.074 2.508 2.819
20 | .0228 0222 0217 .0212 .0207 .0202 .0197 .0192 0188 .0183 23 1.319 1.714 2.069 2,500 2.807
21| .0179 0174 0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143 24 17318 1711 2.064 2492 2797
22| .0139 0136 .0132 .0129 .0125 0122 .0119 .0116 .0113 .0110 25 1.316 1.708 2.060 2485 2.787
23 [.0107 .0104 0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
26 1.315 1.706 2.056 2.479 2.779
24| 0082 .0080 .0078 .0075 .0073 0071 .0069 .0068 .0066 .0064 po 1314 L703 5082 i S
28 1.313 1.701 2.048 2.467 2.763
25 (.0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048 29 1.311 1.699 2.045 2.462 2.756
2.6 | .0047 .0045 .0044 0043 .0041 0040 .0039 .0038 .0037 .0036 30 1.310 1.697 2,042 2457 2750
2.7 | .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026 .
2.8 |.0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019 23 iggg }23‘1‘ %833 i;gg %Z%
29| .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014 o 128 L8 o T3es 2680
30 |.0013 0013 0013 .0012 0012 0011 .0011 .0011 .0010 .0010 °° 1.282 1.645 1.960 2326 2576

Adapted from Table Il of R. A. Fisher and F. Yates, Statistical Tables for Biological, A griculti
and Medical Research, 6th Edition, Longman Group, Ltd., London, 1974. (Previously publishe:
Oliver & Boyd, Ltd., Edinburgh). Used with permission of the authors and publishers.

Adapted with rounding from Table II of R. A. Fisher and F. Yates, Statistical Tables for
Biological, Agricultural, and Medical Research, 6th Edition, Longman Group, Ltd., London, 1974.
(Previously published by Oliver & Boyd, Ltd., Edinburgh). Used with permission of the authors
and publishers.




