| PART

1

Ductile Deformation

We Turw in this section to sttuctures in rocks that form as a result of ductile
deformation. The word ductile is used in the literature in several different ways,
which creates considerable confusion and misunderstanding. Much of the problem
can be traced to the fact that there are ar least three different criteria by which
ductile deformation can be recognized. It can be recognized by (1) the characteristic
structures that are preserved in rocks; (2) the rheology of the deformation—that
is, the form of the telationship among stress, strain rate, pressure, and temperature;
or (3} the microscopic mechanisms that operate to produce the deformation.

Our use of the term is based on the first ser of eriteria, which is consistent
with our emphasis on describing rocks using nongenetic terminology. We use the
term ductile deformation to refer to a permanent, coherent, solid-state deformation
in which there is no loss of cohesion on the scale of crystal grains or larger and
no evideuce of brittle fracturing. Thus there is evidence for distributed smoaothly
varying deformation with no evidence for discontinuities such as open cracks or
pores along grain boundaries or within grains, discrete shear planes on the scale
of crystal grains or larger, or angular grain fragments that indicate brittle frac-
turing. Qur defnition specifically excludes cataclastic flow, which many would
consider a ducrile deformation but whieh we consider te be characteristic of the
brittle—ductile transition. It also in principle excludes soft-sediment deformation,
which is not a coherent deformatiou at the grain scale.

Many writers refer instead to plastic or crystal plastic deformartion. These
terms imply a mechanism of deformation that may not be approptiate. For ex-
ample, it is not clear that they would appropriately describe deformation accom-
plished by solution—-diffusion phenomena. The term plastic carries implications
of a specific type of rheological behavior that does not include, for example,
dependence of the strain rate on the first power of the stress (see Part IV).
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The value of a descriptive and nongenetic term is
that the criteria for using the term can be agreed upon
on rhe basis of observable structures and characteristics
so differences in interpreration do not affect the use of
the word. Nevertheless, we expect that the identification
of appropriate descriptive features should be useful for
inferring the rheclogy and mechanism of the defor-
mation. Thus in Part IV, we discuss those characteristics
of rheology and mechanism that are associated with the
structures of ductile deformation. In particular, we find
that ductile deformation, in the sense in which we use
the term, is associated with the dependence of strain
rate on stress raised to a power generally between 1 and
5, thar it is a thermally activated process that occurs at
elevated temperatures roughly above half the absolute
melting point of the material, and that the rheology of
ductile deformation is only weakly dependent on the
confining pressure. In terms of mechanism, ductile de-
formation is accomplished by the motion of defects
called dislocations through crystal lattices and/or by
diffusion. Thus in praerice, observational evidence for
any of these conditions or phenomena may provide ad-
ditional justification for applying the term ductile
deformation.

In the end, we must admit that there is no com-
pletely satisfactory and unambiguous term to use. More-
over, the processes by which rocks deform range from
brittle to ductile, and imposing arbitrary boundaries on
such a gradation is always to some extent unsatisfactory.

Terminology aside, che most important eoncept of
this part of the book, is that many structures oceur in
rocks that could form only by flow of the rocks in the
solid state. Solid-state flow at first may seem to be an
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oxymoron: Liquids flow, but do solids? In fact they do.
Much of cur modern use of merals, for example, de-
pends on solid-state flow. Bars, rods, and sheets of stee],
as well as copper and aluminum wire, are all produced
by rolling out blocks of metal or drawing it through
dies, essentially forcing it ro flow in the solid state into
rhe desired configuration. Glaciers also flow slowly vet
inexorably downhill by processes that include solid-stare
flow. Metals and glacier ice, like rocks, are polycrys-
talline materials; they are made up of an aggregate of
crystals. By analogy, it may not seem so surprising, then
that rocks also can undergo large amounts of solid-state
flow when subjecred to the appropriate conditions.

QOur aim in Part III is to documenr the evidence
for the solid-state flow of rocks; provide a means for
objectively describing the characreristics of the resulting
structures; and introduce the concept of strain, by which
we can measure ductile deformation and begin to un-
derstand how the different types of structures form.

First we describe folds in rocks (Chapter 11) and
various kinematic models that can account for their
formation (Chapter 12). We then describe foliations and
lineations (Chapter 13) and models for their formation
{Chapter 14). With these fundamental structures pro-
viding evidence {or pervasive ductile deformation in
rocks, we next investigate how we can describe that
deformation quantitatively through the eoncept of strain
{Chapter 15) and how that concept helps us evaluate
and interpret different models for the formation of folds,
foliations, and lineations {Chapter 16). To conclude Part
I1I, we describe methods for acrually measuring strain
in rocks and discuss examples of its application to the
study of natural strucrures (Chapter 17).




CHAPTER

11

Folds are wavelike undulations that develop during de-
formation of rock layers, such as sedimentary scrata.
They are the most obvions and common structnres that
demonstrate the existence of dnctile deformation in the
Earth {see Section 1.3). In fact, as long ago as 1669, the
Danish naturalist Nicholas Steno described folds and
attributed them to Earth movements. Folds occur on all
scales, ranging from huge features that dominate the
reglonal strncture of orogenic core zones (Figure 11.14)
and form entire mountain sides (Figure 11.1B), through
mesoscopic folds on the scale of an outcrop (Figure
11.1C}, to folds visible only under a microscope.

Orogenic belts are all characterized by a number
of fold systems. The Hanks of orogenic belts are gen-
erally marked by large fold and thrust belts in unme-
tamorphosed to lightly metamorphosed sedimentary
rocks, which are underlain by major décollemenrs (see
Chapter 8). These belts, exemplified by the Appalachian
Valley and Ridge province (Figure 11.2A; see Figures
6.12A and 6.13A}, the Canadian Rockies (Figures 6.128
and 6.13B), the Himalaya front, and the Jura mountains
north of the Alps {Figure 11.2B; see Figure 7.11 and
6.21) commonly contain folds that are continuous for
tens of kilometers and rhat in cross section are char-
acterized by layers of relatively constant thickness.

In the central regions, or core zones, of orogenic
belrs, the exposed rocks were generally deformed at
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greater depth, where the temperature is higher than in
the outer fold and thrust beles. The deformation there
is assoclated with pervasive metamorphism and recrys-
tallization of the rocks, and the folding is more intense,
resulting in folds with a different appearance from those
in the fold and thrust belts (Figure 11.1B, C).
Cross sections of the core zones of the Alps (Figure
11.1A4) and of the New England Appalachians (see Fig-
ure 12.35) indicate rhe large-scale character of such fold
systems. Shapes of folds similar to those in metamorphic
rocks (Figure 11.1B, C) also typify deformed salt de-
posits (see Figure 12.34B) and glaciers, which deform
at much lower temperatures than the high-grade meta-
morphic silicare rocks. Such structures apparently im-
ply a high degree of mobility of the roeks and their
component minerals during deformation.

Although most folds we observe are in bedding or
former bedding surfaces, folds also affecr other types of
layers, including dikes, veins, metamorphic or igneous
compositional layering, and foliations, which are planar
structures defined; for example, by the preferred ori-
entation of platy minerals in the rock (see Chapter 13).

Folds are usually studied strictly to reveal their
geometry. The shape, orientation, and extent of folds
can be of critical importance in finding economically
valuable deposits and in predicting continuations of
known deposits. Oil and gas are commonly trapped in
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Figure 11.2 Folds in sedimentary rocks of fold and thrust belts. A. Folds in sedimentary rocks
of Appalachians. Ridges are formed by erosion-resistant sandstones and conglomerates. Note the
fold train of doubly plunging anticlines and synclines in the northwest. B. Cross section of the
Jura Mouutains norch of the Alps, showing the folds in the sedimentary layers {largely limestones)
and the décollement, or sole faulr, below the fold. Folds are class 1B o class 1C.
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the up-bowed parts of folds. Ore deposits may be con-
cenrrated in certain parts of folds, such as hinge zones,
which are the most sharply curved areas, or they may
be locared in particuiar layers that have been folded.

Beyond their economic importance, however, folds
provide a record of tectonic processes in the Earth. The
great variery of fold shapes in roeks must reflect both
the physical conditions {such as stress, temperature, and
pressure) and the mechanical properties of the rock that
existed when the folds developed. If we could under-
stand the significance of f[old geomerry, then we would
have a valuable key to understanding conditions of de-
formation in the Earth.

The description of folds shonld be free of genetic
implications, because genetic terms require interpreta-
tiont of the origin, which may not be well understood.
Ulcimately, however, we wish to associate fold geometry
with the mechanism of formation so that accurate de-
scription can lead ro useful interpreration. Thus the
geometric description in this chapter serves as the basis
for the discussion, in subsequent chaprters, of the ki-
nematics {Chapter 12, Sections 16.1 and 17.3) and the
mechanics (Sections 20.2 and 20.3) of fold formation.
The terminology for describing folds has evolved and
accumulated ovet the past century or so of geologic
investigation, and it is extensive and not always con-
sistent. We introduce the most useful terms in this chap-
ter and present an objective system of describing fold
geometry in terms of elements of fold style.

Geometric Parts of Folds

The simplest part of a fold that displays the charaetes-
istic fold geometry is a single folded surface such as a
bedding surface, which is the inrerface between two
layers of rock. A folded layer can be viewed as the
volume contained between two such surfaces. Most
folds eonsist of a stack of layers folded together, and
rthey can be described as a nested set of folded surfaces.
We discuss the parts of folds by looking first at folded
surfaces, then ar folded layers and multilayers.

Parts of a Single Folded Surface

Figure 11.3 shows several features of folds in a single
surface. A single fold is bounded on cach side by an
inflection line where the surface changes tcs sense of
curvature—for example, from eonvex up to concave
up. (Fold T in the figure is bounded by inflection lines
iy and 3.} If the fold surface is planar in the region of
the inflection, then by definition we take the inflection
line to be the midline of the planar segment. A fold
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Hinge line
Inflection
line

Figure 11.3 Features of a fold train in a single surface. Folds
Iand M are convex up; fold Il is concave up. Folds [ and 11
are unshaded; fold Il and the incomplece pares of folds ar
either end are shaded. Inflecrion lines {dashed) delimic indi-
vidual folds; poinss i, 7, 73, and i4 are the inflection poinrs.
Dotted lines are the hinge lines of each fold.

train is a series of folds characterized by alternating
senses of enrvature. Folds that are convex upward (folds
I and I} are antiforms, and folds that are concave
upward (fold I} are synforms. A fold system is a set of
folds of regional extent characterized by a comparable
geometry and presumably a common origin.

The curvature of any surface is a measure of the
change of orientation per unit distance along that sur-
face. A circular arc has constant curvature, and a flat
plane has no curvature. In general, the curvature mea-
sured along the folded surface from one inflection line
to the next Is not constant, and the hinge line, or more
simply the hinge, is the line in the folded surface along
which the curvature is 2 maximum {Figures 11.3 and
11.4A, B). A single fold may have more than one hinge
(Figure 11.4B). If the maximum curvature is constant
along an arc of finite length, then we take the midpoint
of the arc to be the tocation of the hinge point (Figure
11.4C). The curvature may also vary in magnitude along
any given hinge, and the hinge need not ke a straight
line (see, for instance, Figure 11.54).

A fold with a single hinge closes where the limbs
converge at the hinge zone (Figure 11.44). On an out-
crop pattern of such a fold, the closure is also sometimes
called the nose of the fold. For a double-hinge fold, the
closure is in the region of minimum curvature between
the two hinges (Figure 11.4B).

The hinge zone is the most highly curved portion
of a fold near the hinge line (Figure 11.44); cthe limbs
(sometimes called the flanks} are regions with lowest
curvature and include the inflection lines. Technically,
the hinge zone can be defined as that portion of the
folded surface having a greater curvature than the ref-
erencecircle that is tangent to boch limbs at the inflection
points of the fold (Figure 11.44). In the unusual case
of a fold with constant curvature, the areas near the
hinge and those near the inflection lines are still referred
to loosely as the hinge zone and limbs, respectvely.



Hinge points

Hinge point
and
closure

Hinge zone

Hinge points Hinge points
Reference B
. circle ) -
Hinge Hinge
zone - Fone Hinge point Hinge point
Hinge point Hinge point
and and
closure closure
Reference
circle Hinge points Hinge poaints
A. C.

Figure 11.4 Definition of a hinge point, closure, hinge zone, and limb of a fold. A. The hinge
points are points of rmaximum curvature. The closure point is the hinge point on a single-hinge
fold. The hinge zone and limb are defined wich reference to a circle that is rangent to both sides
of the fold ar rwo adjacent inflection points. The part of the fold that has a curvarure greater
than chat of the teference circle is the hinge zone; the parts between the hinge zone and the
inflecrion points that have a curvarure less than thar of the reference circle are the limbs. B.
Individual folds may have two hinges. The closure point is the point of minimum curvature
berween the two hinges. C. Fold rrains in which each fold has constant curvature and thus is the
arc of a circle (perfecr circular folds). Hinge points are the midpoints of each of the arcs.

The crest line and trough line on a fold are the
lines of highest and lowest elevarion, respectively, on
the folded surface (Figure 11.5). These lines may, but
do not necessarily, coincide with the hinge (Figure
11.5B), and rhey need not be straight lines (Figure
11.5A4). Culminations and deprcssions are areas where
crest or trough lines go through maximum and mini-
mum elevations, respectively.

We generally portray the form of a fold by irs
profile, which is the trace of the folded surface on a
plane normal to the hinge line (Figure 11.6A). The pro-
file is the form of che fold seen when it is viewed [ooking
parallel ro its hinge. The curvature of most folds is

Crest line Crestline
culmination  depression

o VI
S
mge P

)

Trough line
depression

greatest along their profiles. The hinge, inflection lines,
and crest and trough lines appear on the profile, of
course, as points.

"A cylindrical fold is one for which a line of constant
orientation, called the fold axis, can be moved along
the folded surface withour losing contact with it at any
point (Figure 11.6A). Thus itis a line of fixed orientation
that makes an angle of 0° with every orientation of the
folded surface. Folds that do not possess this property
ate called noncylindrical folds. A conical fold is one
whose surface is everywhere ar a constant nonzero angle
to a line of fixed orienration, which is also called the
fold axis (see Figure 11.7A). A fold axis is thus an

Figure 11.5 Crest and trough of a
fold. A. Three-dimensional view of
fold. B. Cross section notmal to the

B. hinge.

Trough
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Figure 11.6 Geamerry of a cylindrical fold in three dimensions and on a spherical projection. A.
Diagram of a cylindrically folded surface, showing the fold axis, the profile plane, and the

- perpendiculars to the folded surface, which are parallel to rthe profile plane. B. Schmidr ner {equal
area) plot of several orientations of the cylindrically folded sutface in parc A, all of which intersecr
ar the fold axis. C. Schimidt ner (equal area) plot of rhe poles to the surface orientarions plotred
in part B. All the poles must lie along a great circle perpendiculat ro the fold axis. The grear
circle also defines the orientarion of the profile plane.

imaginary geometric property of certain kinds of folds.
Folds that are neither cylindrical nor conical in geometry
do not, strictly speaking, possess a fold axis.

Alrthough natural folds are never geometrically per-
fect, many have approximately cylindrical geometry, at
lzast locally, and so can be described by the orientation
of an approximate fold axis. Even irregular folds gen-
erally can be divided inio local segments each of which
is approximately cylindrical so the fold axis can be
defined locally. The irregularity of the fold can be de-
scribed by the variation, from place to place, in the
orientation of the fold axis.

At the hinge of a cylindrical fold, the fold axis
coincides with the hinge line, and for rhis reason rhe
two terms are used interchangeably. Ic is useful to main-
tain the distinction, however, because the rerm hinge
line refers to a linear fearure having a specific orientation
ar a specific location on the folded surface, whereas the
term fold axis refers ro a line having only a specific
origntation that characterizes the fold geometry, at least
locally. Moreover, noncylindrical folds have z hinge but
{with the exception of conical folds) no fold axis.

The geometry of a cylindrical fold and its fold axis
has a parrieularly simple reptesenration on a stereo-
graphic projecrion, which can be extremely useful in
the analysis of folding in a region. A Jine of constant
orientation plots as a point on a stereographic projec-
tion. A plane plots as a great circle. If the line lies in
the plane, rhen on the projection, rhe point must lie
somewhere on the great circle. The fold axis is by def-
inition a common orientarion to all atrirudes of a cy-
lindrically folded surface. Thus on a stereographic
projection the point representing the attitude of rhe fold
axis must lie on each of the great circles represenring
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attitudes of the folded surface. Thus these grear circles
must all inrerseet at the fold axis orienrarion {Figure
11.64, B). Moreover, any line perpendicular to the
folded surface must also be perpendicular ro the fold
axis. On a stereographic projection, all lines perpen-
dicular to a reference line must lie along the great circle
normal to the reference line. Thus the locus of lines
plotted normal to the folded surface (called the poles
1o the surface} must be along the great circle normal to
the fold axis (Figure 11.6C). This great circle also dcfines
the orientation of the profile plane (Figure 11.6A).

These geometric relarionships, and the fact rhat
many folds are ac least locally almost cylindrical, enable
a field geologist ro deduce the orienrarion of a fold axis
from measurements of rtwo or more different attirudes
of a folded surface. Plotting these attitudes as either
great circles (Figure 11.6B) or their peles (Figure 11.6C)
makes it possible to determine the orientation of the
fold axis; this technique is especially useful in areas
where, owing to the scale of the folds or to limited
exposure, the fold axis is not direcrly observable.

For a conical fold (Figure 11.7A), the great circles
represenring orientations of the folded surface do not
inrersect in a point, and they do not exhibit an easily
recognized relarionship to the fold axis (Figure 11.7B).
The poles to the folded surface however must lie along
a small circle at a constant angle from the fold axis
{Figure 11.7C}.

Parts of Folded Layers and Multilayers
The geometry of a folded layer or a stack of folded

layers is equivalenrt to rhat of a nested ser of two or
more folded surfaces. A single multilayer fold is delim-
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Figure 11.7 Geometry of a conical fold in three dimensions and on a spherical projection. A.
Diagram of a conically folded surface. The fold axis is a line of constant orientation that is at
a constant nonzero angle to the folded surface—in this case, 25°. The front face of the block is
pecpendiculac to the fold axis, nor the hinge line, and thecefore is not the profile plane. The
perpendiculars ro che bedding sucface (1 theough 8} are (n chis case all 25° from the plane normal
to the fold axis and 65° from the fold axis itsell. B. Schmidt net {equal area) plor of various
acritudes of a conically folded surface. C. Schmidr net plot of rhe poles to the folded surface and
the fold axis shown in part A. The poles lie on a small circle around the fold axis.

ited by two inflection surfaces that join the inflecrion
lines on adjacent folded surfaces in the nested stack
(Figure 11.8).

The surface joining all hinge lines in a particular
nested set of folds is variously called the hinge surface,
the axial surface, and (if che surface is planar) the axial
plane. In field studies, we usually recognize folds by
their outcrop pattern on a topographic surface. The
intersection of the axial surface with a surface of ex-
posure is a linear feature called the axial surface trace,
which in general is very diffecent from both the hinge

Axial surface

Inflection
surface

Inflection
surface

surface
Fold I

Figure 11.8 Folds in mulrilayecs. A train of folds, showing
the inflection surfaces, each of which contains the inflection
lines of all the folded surfaces oo one limb of a nested set of
folds, and the hinge or axial surfaces, each of which contains
all the hinge lines in a single nested set of folds.

line and the fold axis and musc not be confused with
either {Figure 11.9}. The axial surface trace is never
parallel to the hinge line unless the hinge is parallel to
the surface of exposure.

If the folded layers are sedimentary beds, and if
we can determine their relative ages, then we can dis-
tinguish anticlines from synclines. Anticlines {derived
from the Greek anti, which means “against,” and Akli-
nein, which means “to slope™) are folds in which the
older layers are on the concave side-of a bedding surface
and the younger layers are on the convex side. Synclines

Axial surface
trace on a
horizontal

Axial surface trace

on a vertical plane
Figure 11.9 Block diagram of folds, showing the distincrion
among the axial surface trace on a verrical and a horizontal
surface, the hinge line, and the fold axis.
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Figuce 11.10 Distinction berween an anticline and a syncline in a fold cross section. Arrows point
from oldest to youngest beds-—thar is, in the stratigraphic up direction. The dashed scructure in
part B suggests one way in which lacge secrions of strata conld be overturned.

{the Greek syn, means “with, to”) are folds in which
rhe younger layers are on the coneave side of a bedding
surface and the older layers are on the convex side.

Mast anticlives are convex up (antiforms) and most
synclines are concave up (synforms) (Figure 11.10A),
although this geomerry is not universal. In areas of
compiex deformation where the entire stratigraphy has
been overturned, anriclines may be synformal and syn-
clines antiformal (Figure 11.108).

Fold Scale and Attitude

The Scale of Folds

Scale is a measure of the size of a fold in a layer or
stack of layers. There are two components of the scale:
the amplitude A and the wavelength 1 (Figure 11.11).
We define them with reference to the enveloping surfaces
and the median surface. The enveloping surfaces are the
two surfaces that bound the fold train developed in a
single folded surface. The median surface includes all

Axial surface traces

the inflecrion lines of a fold train in a single surface.
The amplitcude of any fold is the distance from the
median surface to either of the envelopiug surfaces,
measured parallel to the axial surface. The wavelength
is the distance, measured paralielyo the median surface,
between one poiut on a fold and the geomecrically sim-
ilar point on a neighboring fold-—from one antiformal
hinge to the next, for example, or from one synformal
hinge to the nexr.

The Attitude of Folds

The orientartion in three-dimensional space of a fold or
train of folds is an important factor in any geologic
study of folded rocks. Accordingly, an extensive no-
menclature has been based on the atticude of folds. We
express the attitude of a fold by the trend and plunge
of the hinge line or fold axis and the strike and dip of
rhe axial surface. A fold is upright if the dip of the axial
surface is close to vertical; it is steeply, moderately, or
gently inclined as the dip angle progressively decreases;
aud it is recumbent if the axial surface is close to hor-
izontal. Depending on the plunge of the hinge, a fold

Enveloping
surfaces

Axial surface traces

Figure 11.11 The scale of folding is defined by the wavelengrh 4 and the amplitude A for (A)

symmetric folds aud (B} asymmetric folds.
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Figure 11.12 The terminology for describing fold atticude as defined by the plunge of the hinge
(vertical axis} and the dip of the axial surface (horizontal axis). The center graph showing the
ranges of angles associated with each term, and the surrounding diagrams of folds in varying
artitudes, corresponding to the categories in the graph.

is horizontal; subhorizontal; gently, moderately, or
steeply plunging; subvertical; or vertical. A reclined fold
is one whose hinge plunges down the dip of the axial
surface. Thus a fold could be upright horizontal; mod-
erately inclined; moderately plunging; recumbent; and
so forth. Figure 11.12 (the central triangular diagram)
displays graphically the conventional defnitions of these
terms, and the surrounding diagrams give examples of
the various categories.

No folds are indefinite in length; all eventually die
out along the hinge by decreasing in amplitude or ter-
minating against a faule. Where upright or inclined hor-
izontal folds die out, the hinge line must plunge. If a
fold hinge plunges at both ends and the hinge line is at
least a few times as long as the half-wavelength, it is a
doubly plunging fold (see folds in the northwest part
of Figure 11.2A). As the length of the hinge becomes
comparable to the hall-wavelengeh of the fold, the fold
is called a dome or a basin, depending on whether it is
antiformal or synformal.

Several other common terms specify relative ori-
entations of the limbs of folds. A homocline {derived
from the Greek bomo, which means “same,” and kfi-
nein, which means “to slope™) is characterized by a
surface such as bedding thar has a nonhorizonrcal atti-
tude, uniform over a regional scale with no major fold
hinges (Figure 11.13A). A monocline (the Greek mono
means “single, only™) is a fold pair characterized by
two long horizontal limbs connected by a relacively short
inclined limb (Figure 11.13B). A structural terrace is a
fold pair with two long planar inclined limbs connected
by a relatively short horizontal limb (Figure 11.13C).
An inclined or recumbent fold in which oue limb is
overtnrned—that is, rotated more than 90° from tts
origiual horizantal position (Figure 11.13D)—is some-
times called an overturned fold. Note that the term
overturned refers to only one limb of the fold, uot to
the whole fold. Thus an overturned anticline (Figure
11.13D) is not the same as an upside down, or synformal,
anticline (Figure 11.10C).
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A. Homocline

C. Structural terrace

D. West verging overturned fold

Figute 11.13 Structural terms describing the orientation of fold limbs. In part D, the arrows
show the strarigraphic up direcrion on rhe sedimentary beds.

The Elements of Fold Style

The styvle of a fold is the ser of characreristics that
describe its form. It is analogous, for example, to the
architectural style of a building. Over years of working
with folds, geologists have identified certain features as
particularly useful in describing folds and understanding
how they develop. We refer to these features, which are
summarized in Table 11.1, as the elements of fold style.
In this section, we briefly define and discuss these ele-
ments. In Section 11.5, we apply these definitions to
describe the most common fold styles that appear in
deformed rocks.

Table 11.1 Elements of Fold Style

1. Cylindriciry
2. Symmerry
3. Style of a folded surface
Aspect rario
Tighrness
Blunrness
4. Sryle of a folded layer {(Ramsay’s classificarion)
Relarive curvature: dip isogon patrern
Orthogonal thickness
Axial rrace thickness
S. Style of a folded mulcitayer
Harmouy
Axial surface geomerry
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We must first define rwo angles that describe the
amounr thar a surface has been felded (Fignre 11.14).
The folding angle ¢ is the angle between the normals
to the folded: surface constructed at the two inflecrion
points of a fold. It is the angle through which one timb
has been rotated relative to the other by the folding.
The more commonly used interlimb angle 1 is the angle
between the tangents to the two fold limbs constructed
at the inflection points. It measures the dihedral angle
between the two limbs and is the supplement of the
folding angle (that is, 1 = 180 — ¢).

Cyvlindricity

The degree to which a fold approximates the geomerry
of a cylindrical fold {Secrion 11.1} is a feature that char-
acterizes different styles of folding. The cylindricity is
represented qualitatively on a stereonet by how closely
the poles to planes around a fold fit a great circle dis-
tribution (Figure 11.6C). The distance along the hinge
for which the cylindrical geometry is maintained, mea-
sured as a proportion 6f the haif-wavelength, is also a
significant characteristic of the cylindricity. A multilayer
fold can be described as cylindrical if the articudes from
all surfaces in the multilayer conform to the geometry
of a cylindrical fold (Figure 11.6C). The tetm cylin-
droidal is sometimes used to describe a fold that closely
approximates an ideal cylindrical geometry.




Bisector of ¢
A. Symmetric fold

Bisector of &~ N, gy Folding angle

B. Clockwise asymmetric fold, z-foid

interimb angle
\/ a

. ﬁ-\
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Median line

C. Counterclockwise
asymmetric fold, s-fold

Bisector of §

Axial surface trace ",

Figure 11.14 {Left) The folding angle, the inrerlimb angle,
and the symmetry of folds. In part A, the fold profile from
rhe hinge to i) is the mirror image of the profile from the hinge
to iy. The bisector of the folding angle and the inreclimb angle
is the mirror plane, and it is the perpendicular bisector of the
median line f47;. ff equals 20° in part A, bur ir is nor equal to
90° in parts B and C. In part D, an asymmetric mulrilayer
fold is cbaracterized by the inclinarion § of the folding angle
bisecror as well as by the inclination # of the axial surface
wich respect to the median surface.

Svmmetry

A folded snrface forms a symmetric fold if in profile,
the shape on one side of the hinge is a mirror image of
the shape on the other side, and if adjacent limbs are
identical in length {Fignre 11.144 and 11.11A). For
folded layers and mnltilayers, the axial plane is the
micror plane of symmerry. It is rthe perpendicular bi-
sector of the median surface berween the inflection
points, and it bisects both the folding angle ¢ and the
interlimb angle 1.

Asymmetric folds in profile have no mirror plane
of symmetry, and the limbs are of nnequal length (Fig-
ures 11.11B and 11.14B, C). The degree of asymmetry
is determined for a folded surface by the angle of in-
clination f berween the bisector of the folding angle ¢
{or the interlimb angle 1) and the median surface (Figure
11.14B, C). For a multilayer fold, the axial plane is not
gererally parallel to the bisector of the interlimb angle,
and the angle of inclination # berween the axial surface
and the median surface is another independent char-
acreristic of the asymmetry (Figure 11.14D).

The sense of asymmetry of a fold changes de-
pending on whether we view the fold from one direcrion
along the hinge or from the other. By convention, we
specify the sense of asymmetry on a plunging fold when
looking down the plunge of the hinge line. An asym-
metric fold is a clockwise fold, or z-fold, if the short
limb has rocated clockwise with respect to the long
limbs, and the short limb with irs two adjacent long
limbs therefore defines a z-shape (Figure 11.14B). An
asymmetric fold is a counterclockwise fold, or s-fold,
if the short limb has rotated counterclockwise with re-
spect to the long limbs, and the shorr limb with its two
adjacent long limbs therefore defines an s-shape (Fig-
ure 11.14C).

If the fold hinge is horizontal, the geographic di-
rection of viewing must be part of the description of
the asymmertry; for example, the fold is counterclock-
wise (or an s-fold} looking north. For an inclined fold
with a horizontal to gently plunging hinge, however,
the sense of asymmetry is more conveniently specified
by the vergence (from the German word Vergenz, whiech
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means “overturn’). The vergence is the direction of
“leaning” of the axial surface or the up-dip direcrion
on the axial surface of an asymmetric fold. In Figure
11.13D, for example, the vergence of the fold is ro rhe
west.

Small symmetric folds, especially if they are within
the core of a larger fold, are sometimes called m-folds.

The Style of a Folded Surface

We describe the geometry of a folded surface by spec-
ifying three style elements: aspect ratio, tightness, and
bluntness. To define these characreristics, ir is first con-
venient ro construct a quadrilateral around the fold in
question such that the sides are tangent to the limbs of
the fold ar the inflection points, the base is the line M
between the inflection points, and che top is tangent to
the fold and normal to the bisector of the folding angle
¢. For symmetric folds, the quadrilateral is a trapezoid,
as shown in Figure 11.154 and B for folds with a folding
angle ¢ = 130° and 230°, respectively.

The aspect ratio P is the ratio of the amplitude A
of a fold, measured along the axial surface, to the dis-
tance M, measured berween the adjacent inflection
points that bound the fold (Figure 11.15). In other
wotds, P is the ratio of the height of the quadrilateral
to its base. For a petiodic fold train, in which successive
folds have the same wavelength 4 (Figure 11.11), M is
the half-wavelength (4/2). Folds of increasing aspect
ratio have a wide, broad, equant, short, or tall aspect,
as defined in Table 11.2.

The tightness of folding is defined by the folding
angle ¢ or the interlimb angle @ (Figure 11.15). As the
degree of folding increases, the folding angle increases
and the interlimb angle decreases. Folds are gentle, open,
elose, tight, isoclinal, fan, or involute folds, as defined
in Table 11.3. Tsoclinal folds, which have essentially
parallel limbs, fall on the boundary between acute folds
(/2 < 90°) and obtuse folds (/2 > 90°),

The bluntness & measures the relarive curvature of
the fold at its closure (Figure 11.15). It is defined by

b= 7.7y forr, < g
2—-rnyfr, forr. 21

where . is the radius of curvature at the fold closure,
and g is the radius of the circle that is tangent to the
limbs at the inflection points. Folds are sharp, angular,
subangular, subrounded, rounded, or blunt (Table 11.4
and Figure 11.16). A bluntness of 4 = 0 describes folds
that have perfectly sharp hinges {r, = 0); 6 = 1 describes
perfectly circular folds, which, for both acute and obtuse
folds, consist of a single cireular arc; & = 2 describes a
double-hinged fold with a flat closure (r, = c0). One
can picture the folds having & =2 by looking ar the
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right-hand end of the series of folds in the shaded trap-
ezoids in Figure 11.16A and B and imagining the radius
of closure curvature to increase indefinitely. Thus all
folds must have a bluntness between 0 and 2. For double-
hinged folds, a complete description must include the
bluntness of the hinges in addition to the bluntness of
the closure.

We show the range of fold styles defined by the
aspect ratio and the bluntness for two constant folding
angles, ¢ = 130° (Figure 11.164) and 230° (Figure
11.16B). The folds along rhe horizontal line of shaded
trapezoids in cach diagram show the styles that can
occur within a single shape of trapezoid. They are dis-
tinguished only by different values of the bluntness. The
folds along any verucal line show how fold style changes
for different aspect racios at constant bluntness. The
folds along the inclined line labeled perfect folds are

Table 11.2 Aspect Ratio

Aspect Ratio P

Descriprive Term P=A/M Log P
Wide 01<P<025 —1<logP=< —06
Broad 025 <P <063 —06=<logP< —02
Equant 05=P=<2 ~02<log P <02

Short 1.58<P <4
Tal] 4 <P <10

0.2<logP <06
06<loglP <1

Sowurce: After Twiss (1988).

Table 11.3 Tightness of Felding

Folding Angle Interlimb Angle

Descriptive Term &, deg 1, deg
Acute
Gentle 0< ¢ <60 180 > 1 > 120
Open 60 < ¢ < 110 1202 1> 70
Close 110 < ¢ < 150 702 1> 30
Tight 150 < ¢ < 180 0z:>0
Isocliual ¢ = 180 1=0
Obrtuse
Fan 180 < ¢ < 250 0>1> =70
Involure 250 < ¢ < 360 —70=1>= —180

Source: Modified afrer Fleuty (1564).

Table 11.4 Bluntness of Folds

Deseriptive Term Blunrness
Sharp 00 b <01
Angular 0.1<b<02
Subangular 02<0 <04
Subrounded 04=<b<0.8
Rounded 08=bx<1
Blunt 1<bxl

Source: After Twiss (1988).
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Figure 11,15 The style of a folded surface is characterized by the quadrilateral formed by the
tangents to rhe limbs ac the inflection poinrs, by the line iy75, aud by the normal to the folding-
angle biseetor thar is tangent to the fold near the closure. The curvature of the folded surface
within the quadrilateral further defines the style. The aspect ratio P = A/M. The bluntness & is
defined in terms of rhe relative values of the closure radius r, and the reference radius 7.
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Figure 11.16 Variation of possible fold styles on planes of constant ¢ through fold style space.
Axes are not to scale. Bluntness categories are indicated across the top of each diagram. The
reference radins for all folds in each diagram is the radius of the perfect circular fold at cthe lower
end of the line of perfect folds. Shaded trapezoids show bluntness categories for the shaded
trapezoids in Figure 11.17. Perfeer folds have perfectly straight limbs tangent to hinge zones that

are perfecrly eircular ares. A. Acute folds for ¢ =

130°. Perfecr folds plot along the diagonal from

the perfect chevron fold in the upper lefr to the perfect circular fold in the lower right. All single-
hinged folds ploc wichin the shaded area. Qutside this area, folds are multple-hinged. B. Obruse
folds for ¢ = 23G°. Perfect folds plot along the diagonal carve from the perfecr circular fold in
the lower eenter through the limic for periodic folds at the verrical dashed line in the upper right.
All single-hinged folds plor within the shaded area. Qutside thar area, folds are mulciple-hinged.
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idealized folds having perfectly planar limbs that are
tangent to perfectly circular hinge zones. Note that in-
creasing either rhe bluntness or the aspect ratic beyond
the value for perfect folds (that is, outside the shaded
area of the diagram) resulrs in a fold with two hinges.

Figure 11.17, a plot of aspect tatio versus tightness,
shows the various possible quadrilateral shapes that
define fold style. The folds shown in the quadrilaterals
are all perfect folds. The shaded area indicates the pos-
sible range for all single-hinged folds. Perfect chevron
folds, for which & = 0, are an upper bound limiting the
geometry of all folds. Perfect circular folds, for which
b =1, are a lower bound for all possible single-hinged
folds. Any obtuse, single-hinged, perfect fold that is part
of a periodic fold train must have a closure radius less
than or equal to the half-wavelength of the fold
(r. < M). These folds therefore provide an upper bound
for single-hinged periodic folds.

The heavy dashed lines and the solid trapezoids
show where Figure 11.16A and B, and the shaded tra-
pezoids in those figures, ptojects onto this plot. The
shaded trapezoids in Figure 11.17 expand in the third
dimension into the row of shaded trapezoids shown in
Figure 11.16A at a value of P = 0.6, and in Figure 11.168
at a value of P = 1.7,

This brief outline of the three-parameter method
for classifying the style of a folded surface gives some
idea of the wide variety of fold shapes that can be simply
described. With a fuller investigation of the three-
dimensional geometry of “fold style space,” we can
show, for example, that all perfect folds plot on a single
surface in the space that defines the boundary between
all possible single- and double-hinged folds. Note that
we have restricted our discussion to symmetric folds.
Asymmetric folds can also be included in this scheme,
although they are considerably more complex.

Tightness
Acute 1 Isoclinal I Obtuse
10 Gentle Open Close | Tight Fan Invelute
1
8 —
Tall 6 Projection
of Figure
5 /11.165
4 —
Limit for
3 periodic
Short 1\ fold trains
2 b £
Projection v
1.7 7 of Figure = ;
© T A6A —f— | Shaded trapezoids
= . in Figure 11.168
b —_— S 7
g1 Bquant | P el o T \( ]
o 1 20 40 60 8G 100 ‘ T 340 360
2 0.8 | ; (
- i AN
CY SR
' Shaded trapezoids " '/
0.5 . v in Figure 11.164 L
Broad 044 Perect | LS LN i v Yalby
chevron I P L Vo
G.3- folds of l , ! \ !
b= AN L T ST e
0.2J IR W
Wide Pearfect Lo
circular v VL !
L L folds \ L
_Hh=0 {

0.1

130°

230°

Figure 11.17 Ploc of che logarichm of aspect ratic vs. tightness showing a selection of quadrilaterals
and a few representative perfect and double-hinged folds. Also shown are areas of impossible
gecmerries, areas of double-hinged folds, and lines for circular folds and periodic obtuse fold
trains, Figure 11.16A, B projects onto this diagram aleng the heavy verrical lines.
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The Style of a Folded Layer: Ramsay's
Classification

The style of a folded layer is determined by comparing
the fold styles of the two surfaces of the layer. The
comparison is conveniently made by using three geo-
metric parameters that are defined relative to a given
pair of parallel lines tangent, respectively, to the inner
(concave) and outer {convex) surfaces of the layer on
the fold profile (Figure 11.18). The inclination of the
fold surface at the point of tangency is given by «, the
angle between the tangent line and the line normal to
the axial surface trace. The three geometric parameters
are as follows: (1) the dip isogon, which is the line across
the layer connecting two points of equal dip on opposite
surfaces of the layer; (2) the orthogonal thickness ¢,
which is the perpendicular distance between the two
parallel tangents; and (3) the axial trace thickness T,
which is the distance between the two tangents, mea-
sured parallel to the axial surface trace. The two mea-
sures of layer thickness ¢, and T, are related by ¢, = T,
cos 0.

The elements of style for a folded layer are defined
according to how these geometric parameters vary
across the fold from the hinge to the limbs, or with
increasing values of the surface inclination o.

1. The relative curvature or the variation in dip isogon.
The relative curvature of the convex and concave
surfaces is revealed by constructing a set of dip is-
ogons at regular intervals from the hinge to the limb,
each of which connects points of identical inclination
o on the inner (concave) and outer {convex) surfaces
(Figure 11.19). If the dip isogons converge toward
the inner side of the fold, the curvature of the inner
surface is greater than that of the outer surface; if
they divetge toward the inner surface, the opposite
is true.

Tangents to
surfaces of
folded layer

Axial trace
thickness

I
¢
F
i
‘
:

Axial
swrface

Qrthogonai trace

thickness !

Figure 11.18 Dehnition of the layer inclination ¢, the dip
isogon, the orthogonal thickness ¢, and the axial trace thick-
ness T, used to define the scyle of folded layers.

Class 1A

Class 1B: Parallel fold

Class 1C Class 3

Figure 11.19 Ramsay’s classification of folded layers (see Ta-
ble 11.5).

Class 2: Similar fold

For most folded layers, the relative curvature is
consistent and defines three styles of folds. Dip iso-
gons that converge toward the inner side of the fold
characterize class 1 folds (Figure 11.194, B, C). Par-
allel dip isogons, which also are parallel to the axial
surface, characterize class 2 folds (Figure 11.18D).
Folds of this style are referred to as similar folds,
because adjacent fold surfaces ideally are identical
(similar} in form. Dip isogons that diverge toward
the concave side of the fold characterize class 3 folds
(Figure 11.19E). The relative curvature is most ob-
vious in the hinge zone, which generally makes it
possible to classify folds by visual inspection.

2. Variation in the orthogonal thickness. The variation
in the orthogonal thickness from hinge to limb is
characteristic of different styles of folds and is the
basis for the subdivision of class 1 folds (Figures
11.194, B, C and 11.20A4).

For class 1A folds, the orthogonal thickness in-
creases from hinge to limb (Figure 11.19A). For class
1B folds, the orthogonal thickness is constant from
hinge to limb (Figure 11.19B); These folds are re-
ferred to as parallel folds because ¢, is constant all
around the fold. Concentric folds are parallel folds
whose inner and outer surfaces both have a bluntness
of b = 1. Thus, they are folds defined by two circular
arcs having a common center. For class 1C folds, the
otthogonal thickness decreases from hinge to limb
(Figure 11.19C). The orthogonat thickness also de-
creases from hinge to limb for class 2 and class 3
folds (Figure 11.20A). _

3. Variation in the axial trace thickness. The three
classes of fold style also differ in the way the axial
trace thickness varies. From hinge to limb—that is,
with increasing #—the axial tracc thickness increases
in class 1 folds, is constant in class 2 folds, and
decreases in class 3 folds (Figure 11.208).
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foided layers according to the thick-
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Table 11.5 summarizes the characteristics of the
different fold classes in terms of the dip isogon geometry
and the variation in orthogonal thickness and axial trace
thickness. The characteristics of thickness shown in Fig-
ure 11.20 demonstrate that fold classes 1B and 2 are
idealized geometries that form the boundaries between
the other classes of folds. Thus some combinations of
the geometries that fall in classes 1A and 1C closely
approach class 1B style. Similarly, some combinations
of fold geometries in classes 1C and 3 closely approach
class 2 style. Not all possible folds are included in this
classification, but most of the commanly observed geo-
metries are included, and the characreristics of other
styles can be presented on graphs such as in Figure 11.20.

The Style of a Folded Multilayer
A multilayer fold is composed of a stack of layers folded

together. Its fold style can be defined in terms of the
harmony of the folding and the axial surface geometry.

Table 11.5 Style of a Folded Layer

30 60 80

a, deg

1. Harmony of Folding. In profile, all multilayer folds
must die out in both directions along the axial surface
trace (Figure 11.21) unless che folded sequence in-
cludes a free surface such as che Earth’s surface. The
depth of folding D is the distance along the axial
surface trace over which the folding persists. The
harmony H is a scale-independent measure of the
rate at which the fold dies out along the axial surface
trace and is equal to the ratio of the depth of folding
D to the half-wavelength 1/2,

H=2D/}

A harmonic fold is continuous along its axial trace
for many multiples of the half-wavelength (Figure
11.21A). A disharmonic fold dies out within 2 couple
of half-wavelengths or less (Figure 11.21B).

In general, because muldlayer folds die out
along the axial surface trace, dip isogons must form
closed contours between two adjacent hinges (Figure
11.22A). As the fold amplitude increases, reaches a
maximuin, and then decreases along the axial surface

Dip Isogon Geometry

Orchogonal Thickness

Axial Trace Thickness

{from convex to {from hinge (from hinge

Class concave sarface) to limb) to limb}

1 Convergent Increases
1A Counvergenr Increases [ncreases
1B Convergenr Constant _ Increases
1C Convergent Decreases Increases

2 Parallel Decreases Constanr

3 Divergent Decreases Decreases

Source: Afrer Ramsay (1967).

232 DUCTILE DEFORMATION




Inflection
surface traces

A.
Axial surface
trace

Class 1

Class 2

Class 3

A,

Figure 11.21 Harmony of folded mulcilayers. A. Harmonic folds affect layers
for many times the half-wavelengrh along the axial surface. They have a large
ratio i of the depth of folding D to hall the wavelengeth A: H =2D/4. The

half-wavelength may conveniently be approximated by the spacing of adjacent
axial sucfaces 5. This fold style is approximartely a mulrilayer class 2 fold. B.
Dishatmonic folds die our within a distance on the order of 2 wavelength
along the axial sucface and thus have a small racio of depth to half-wavelengch.
Nearby layers fold independently of one another.

Class 3

Class 1B

Figure 11.22 Profiles of multilayer
folds, showing dip isogon patcerns in
successive layers. A. The dip isogon
pattecn in z multifayer fold thar dies
ouc in both directions zlong the axial
surface crace. In the shaded fold, iso-
gons show regions of convergenee
(class 1), parallelism (class 2), and di-
vergence (elass 3). B. Diagram of a fold
in which the dip isogons are alcernacely
converging (elass 1b folds) and diverg-
ing (class 3 folds) in suecessive layers.
The average isogon patrern is approx-
imarely pacallel to the axial sucface,
giving an approximately class 2 ge-
ometry. C. Folds in an interlayered
chetr—shale sequence that approxi-
mates the geometry shown in pact B
{lines drafred on phato emphasize bed
CONLacs).
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Figure 11.23 Disharmonic nature of class 1B folding resulting in a surface of disharmony or
décollemenr. A. Diagram of a class 1B fold showing the surface of disharmony, the décollement.
The half-wavelength is measured on the surface that has the maximum amplirude. Dip isogons
converge strongly on the point of zero radius of curvature. B. A class 1B fold formed in a banded
gneiss during deformation well afrer peak metamorphism.

trace, the dip isogons converge, are roughly parallel,
and then diverge. Thus all three of Ramsay’s fold
styles must occur in every multilayer fold. Although
the strict definitions of the fold class nomenclature
are more difficult to apply ro muldlayer fold clas-
sification, the dip isogon pattern still reveals impos-
tant characteristics of the folds.

For harmonic folds, the average convergence or
divergence of the dip isogons is very small, so the
folds approximate a class 2 (similar) geometry. Dip
isogons consttucted for each layer, however, may
vary smoothly from layer to layer (Figure 11.22A4)
or-change radically, in some cases alternating from
convergent to divergent in succeeding layers (Figure
11.22B, C). In the latter cases, the harmony is de-
termined by the trend of the dip isogons averaged
over several adjacent layers.

For disharmonic {olds (Figure 11.21B), the dip
1sogons converge or diverge very strongly along the
axial surface trace. For multilayer folds that ap-
proximate class 1B (parallel} folds, for example, the
radius of curvarure decreases toward the concave side
of the fold, and the dip isogons converge strongly
(Figure 11.23A). Where the radius of curvature ap-
proaches zzro, the fold must die out rapidly along
the axial surfacc at a décollement or a sole fault
{(Figure 11.23). In fold and thrust belts this décolle-
ment commonly corresponds to che basal thrust fault
into which thrusts converge (Figure 11.2B; sec also
Chapter 6).

2. Axial Surface Geometry. Throughout our discussion
s0 far, we have assumed that the axial surface is
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planar. Many folds, in fact, display parallel or sub-
parallel axial surfaces that are planar or only slightly
curved. It is not unusual, however, for folds to have
a nonplanar axial surface; such folds are called con-
volute folds. In some cases the axial surface itself
describes a cylindrical fold (see Figures 12.31 and
12.32), whereas in others it is more irregular. The
convolution generally is the result of deformation of
earlier folds by one or more subsequent generations
of folding. We discuss the geometry of such super-
posed folding in Section 12.7.

Some folds of a single generation develop with axial
surfaces that have widely disparate orientations or that
splic into two or more surfaces. Such folds are usually
called polyclinal folds {derived from the Greek poly,
which means “many” and klinein, which means
“slope™).

The Order of Folds

Folds characteristically develop simultaneously at dif-
ferent scales, so large folds include smaller-scale folds
in-their limbs and hinge zones. We generalty distingnish
among these different scales of related folds in terms of
their order, the largest-scale folds being first-order folds,
and successively smaller scale folds being of higher order
{Figure 11.24). Firsr-order folds are generally regional-
scale features. Folds observed on the outcrop scale are
commonly second- or highet-otder folds. Higher-order




First-order fold

| ¢ Second-
! order foid
|

folds are sometimes called parasitic folds. The median
surface of a set of high-order folds defines the folds of
the next lower order. Thus the median surface of a train
of third-order folds defines the second-order fold train,
and the median surface of second-order folds describes
the first-order fold shape (Figure 11.24; see Figure 12.18).

The asymmetry of higher-order folds changes
across the axial sutface of the next lower-order fold, as
seen in Figure 11.24, and this feature is a very convenient
field mapping tool for identifying the presence and lo-
cation of low-order folds. The style and attitude of
higher-order folds are generally very close to those of
lower-order. This correspendence, known as Pumpelly’s
rule, is also a valuable aid in deducing the geometry of
large structutcs.!

Common Styles and Structural
Associations of Folding

Some combinations of style elements accur together so
often in deformed rocks that thesc fold styles have been
given names. Moreover, certain styles of folds are char-
acteristic of particular tectonic scttings. In this section
we describe some of the more common of these asso-
cianons.

Parallel Folds

This style of fold is strictly defined as class 1B for either
single or multilaycr folds. In standard usage, however,
the term applies to class 1A and class 1C folds whose

! The rule is named for Raphacl Pumpdlly, che geologist for the U.S.
Geological Survey who first proposed this relationship, which he
recognized from mapping in the metamorphie rocks of the Green
Mounrains, western Massachuserts, in 1894.
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geometry is very close to that of class 1B (Figure 11.20).
Folds of chis style characterize the geometry of fold and
thrust belts, which lie on the matgins of orogenic belts
(Figure 11.2}.

Rocks of these deformed belts are mostly unmeta-
morphosed to lightly metamorphosed layered sedi-
ments. Generally, the folds are approximately cylindri-
cal over distances along the hinge that are large
compared with the wavelength. Hinges are horizontal
to gently plunging, and in the outer regions ncar the
foreland they tend to have upright axial surfaces, widc
aspect, and gentle to open limbs. In the inner part of
the belt closer to the hinterland, the aspect ratio tends
to increase, limbs are tight or isoclinal (Figure 11.17),
and the axial surfaces become inclined ot recumbent
{Figure 11.12), with vergence towatd the foreland.
Hingcs are rounded in some cases and angular in others.

At a depth comparable with their dominant wave-
length, the parallel folds of these belts die out at a sole
fault, or décollement, as required for the geometry of
class 1B multilayer folds (Figures 11.2B and 11.23). This
décollement tends to rise to progressively higher stra-
tigraphic levels toward the foreland in a series of steps
or ramps that alternately parallel and cross-cut the bed-
ding. Some of these folds, called fault-ramp folds, de-
vclop as the thrust sheet slides up thesc ramps {Figures
6.6 and 6.11).

The structure of fold and thrust belts in map view
ts exemplified by that of the Appatachian Valley and
Ridge province (Figures 11.24 and 6.124). The folds
are continuous for up to tens or hundreds of kilometcrs.
They typically die out as plunging structures, and the
shortening accommodated by a fold thar dies out is
taken up eithcr by adjacent folds or by thrust faults.
The higher-amplitude folds are toward the interior of
the range, and both the amplitude and the abundance
of folds decreases toward the foreland. In the Appala-
chian Plateau, for example, the folding angle of the
dominant folds is typically only a few degrees.
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Similar Folds

As stricrly defined, similar folds have the geomerry of
class 2 single and multilayer folds. In common usage,
however, rthe term is applied to fold styles that are very
close to the class 2 sryle but chat range ftom class 1C
to class 3 (Figure 11.20). These [olds are typical of che
regionally metamorphosed central core zones of oro-
genic belts (Figure 11.1). They vary in actitude, and
many are recumbent, although upright and reclined
folds are not unusual. The folds are approximately cy-
lindrical, although the distance along the hinge for
which the cylindrical geometry is consistent is highly
variable. Asymmetric folds are typical. The folds tend
to have large aspect ratios, close to isoclinal limbs (see
Figure 11.17), and angular ro subangular hinges (see
Figure 11.16A). Fold axial surfaces commonly are con-
volute and themselves describe fold systems. An axial
surface foliation is often associated with the folds.
Folds of this style that are large-scale, recumbent,
and isoclinal are called fold nappes (Figure 11.1A and
B).% In some cases, the overturned limbs of chese folds

“

2 The term nappe is 2 French word meaning “cover sheer” or “ra-
blecloth” and refers to any allochrthonous sheetlike body of rock chac
Las moved on a shallowly dipping surface. A nappe may originate
as a recumbent isoclinal fold or as 2 thrust faul.

become sheared out so that the fold is furcher displaced
by faulting, thus becoming a thrust nappe (an example
is the Morcles nappe shown in Figure 11.1A).

Folds in salt domes and glaciers tend also to be
similar folds. In borh settings, the folds are generally
harmonic and tight to isochinal, with subangular to an-
gular hinges. Folds in salt domes are steeply reclined
with their axes parallel to the margins of the srructure,
whereas in glaciers the folds tend to be gently plunging,
recumbent features.

Other Styles of Folds

Chevron and kink folds are cylindrical, harmonic, mul-
tilayer class 2 folds that have angular to sharp hinges,
equant aspect, and gentle to close limbs. Chevron folds
are symmetric (Figure 11.25A, C) and kink folds are
asymmetric (Figure 11.258). Both fold styles commonly
develop in rocks that have a strong planar mechanical
anisorropy such as phyllites and schises, which are char-
acterized by a strong preferred orientation of abundant
platy minerals, and finely laminated rocks such as in-
terbedded sandstones or cherts with shales. In the larter
case, the multilayer class 2 geometry is provided by
alternations berween class 1 and class 3 folds in the

Sandstone —

Shale —

Figure 11.25 A, Chevron folds, B. kink folds, C. chevron folds in a sequence of alternaring layers

such as sandstone and shale.
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sandscones and shales, respectively (Figures 11.25C and
11.22C).

Ptygmatic folds {the Greek word ptygma means
“fold”) are disharmonic folds rhat develop in individual
layers. The folds tend to be equanc in aspect with close

Figure 11.26 Prygmatically folded layers in a
banded marble, Bishop Creek roof pendent,
Sierra Nevada, California.

to fanning limbs, rounded to subrounded hinges, and
class 1B or 1C layer geomertcy. They typically develop
in layers, dikes, or veins in metamorphic rocks (Figure
11.26) and in sandstone layers or dikes in some sedi-
mentary sequences.
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