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Figure 1.11b  Steps and results of bivariate regression.

In the Introduction and in Chapter 1, we discussed that spatial data consist of
cartographic data (which describe the locational and geometric characteristics of
features) and attributes data (which provide meanings to the geographic features).
In Chapter 1, we focused on the analysis of attribute data exclusively, and thus the
analysis was aspatial. Starting with this chapter, we will discuss statistical tools
that have been implemented in GIS and have been especially designed to analyze
only locational information or locational information together with attribute infor-
mation. In this chapter, the locational information of points will be used in several
descriptive geostatistics or centrographic measures to analyze point distribution.

2.1 THE NATURE OF POINT FEATURES

With vector GIS, geographic features are represented geometrically by points,
lines, or polygons in a two-dimensional space. Geographic features that occupy
very little or no areal extent at a given scale (the scale of study) are often rep-
resented as points. In a vector GIS database, linear features are best described
as lines, and regions or areal units are often structured as polygons. As a whole,
we refer to points, lines, and polygons as geographic objects since they represent
geographic features.

While geographic objects can be conveniently represented as points, lines, and
polygons, the relationship between geographic objects and the geographic fea-
tures they represent is not always fixed. Scales often determine how geographic
features are represented. For example, a house on a city map is only a point, but
it becomes a polygon when the floor plan of the house is plotted on a map. Simi-
larly, the City of Cleveland, Ohio, is represented by a large polygon that occupies

33



34 POINT DESCRIPTORS

an entire map sheet. In this way, the details of the city’s street network and other
facilities are shown on a large-scale map (large because the ratio may be 1:2,000
or larger). Alternatively, Cleveland is often represented only as a point on a small-
scale map (small because the ratio may be 1:1,000,000 or smaller) that identifies
all of the major cities in the world.

The degree of abstraction also affects how various geographic objects repre-
sent geographic features. This is because points can be used not only to represent
physical geographic features such those described above, but also to describe the
locations of events and incidences such as disease occurrences or even traffic ac-
cidents. In these cases, points do not represent real geographic features, but just
locations of the events. Furthermore, for transportation modeling, urban analysis,
or lacation-allocation analysis, areal units with significant spatial extents are often
abstractly represented by points (such as centroids) to accommodate specific data
structures, as required by the analytic algorithms.

In this chapter, we will focus on point features. Points are defined by coordi-
nates. Depending on the coordinate system and the geographic projections, points
on a map can be defined by a pair of latitude and longitude measures, x and y
coordinates, easting and northing, and so on. On a small-scale map that covers a
large areal extent but shows few geographic details, points can be used to iden-
tify locations of cities, towns, tourist attractions, and so on. On a large-scale map,
points may represent historical landmarks, street lights, trees, wells, or houses.

While points on any map are all simple geometric objects that are defined by
their coordinates, the attributes associated with these points provide specifics to
differentiate them according to the characteristics emphasized. Consider a map
showing all residential water wells in a city; the points will all look alike except
for their locations. If attributes such as owners’ names, depths, dates dug, or dates
of last water testing were added to the database, more meaningful maps could be
created to show spatial variation of the wells according to any of the attributes.

Individually, points may represent the locations of geographic features. The
associated attributes help to describe each point’s unique characteristics. The de-
scription of spatial relationship between individual points, however, requires the
application of some of the spatial statistics described in this chapter. Specifically,
we will discuss ways to determine where points are concentrated, as described
by their locations or weighted by a given attribute. We will also examine how to
measure the degree of dispersion in a set of points. This set of tools is also known
* as centrographic measures (Kellerman, 1981).

The spatial statistical methods to be discussed in this chapter are appropriate
for points that represent various types of geographic features in the real world.
A word of caution is needed here: the accuracy of locational information and
its associated attribute values must be considered carefully. This is because the
reliability and usefulness of any inference that results from analyzing the points
are often affected by the quality of the data.

Point data obtained from maps may contain cartographic generalizations or lo-
cational inaccuracy. On a small-scale map, a point may represent a city whose
actual areal extent is a certain number of square miles, while another point may
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represent a historical landmark or the location of threatened plant species that oc-
cupy only several square inches on the ground. Comparing these points directly,
however carefully performed, would be like comparing oranges with apples. Point
locations derived from calculating or summarizing other point data can be espe-
cially sensitive to the quality of input data because the inaccuracy of input data
will be propagated during computation, so that the results are of little value due
to the magnitude of the inaccuracy.

For this reason, we urge spatial analysts to be sensitive to the scale of a spatial
database and the quality of the data used in the analysis. Statistical methods can
be very useful when they are used correctly, but they can be very misleading and
deceiving when used inappropriately or carelessly.

2.2 CENTRAL TENDENCY OF POINT DISTRIBUTIONS

In classical statistics, the conventional approach to summarizing a set of values
(or numerical observations) is to calculate the measure of central tendency. The
central tendency of a set of values gives some indication of the average value
as their representative. The average family income of a neighborhood can give
an out-of-towner a quick impression of the economic status or living style of the
neighborhood. If you plan to visit an Asian country for Christmas, it would be
useful to know the average temperature in December there so that you know what
clothing to take.

When comparing multiple sets of numerical values, the concept of average
is particularly useful. Educators can use average scores of state proficiency tests
between elementary schools to see how schools compare with one another. Com-
paring the harvests from farms using a new fertilizer with the harvests from farms
without it provides a good basis for judging the effectiveness of the fertilizer. In
these and many other similar settings, the central tendency furnishes summary
information of a set of values that would otherwise be difficult to comprehend.

Given a set of values, x;,i = 1, 2, ..., n, measures of central tendency include
the mean, weighted mean, and median. The mean, X, is simply the arithmetic
average of all values as

2?:1 Xi

n

X =

What if the observation values in a data set do not carry the same level of
importance? Obviously, the measure of central tendency will not be simply the
arithmetic mean. In that case, each value, x;, in the data set will first be multiplied
by its associated weight, w;. The sum of the weighted values is then divided by
the sum of the weights to obtain the weighted mean:

E7d Z?:l Xi Wi
Xw =

Do Wi
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Another measure of central tendency in classical statistics is the median. These
two measures of central tendency were discussed in Chapter 1.

When dealing with a data set that contains observations distributing over space,
one can extend the concept of average in classical statistics to the concept of cen-
ter, as a measure of spatial central tendency. Because geographical features have
spatial references in a two-dimensional space, the measure of central tendency
needs to incorporate coordinates that define the locations of the features or ob-
jects. Central tendency in the spatial context will be the mean center, the weighted
mean center, or the median center of a spatial point distribution.

There are several ways in which the position of such centers can be calculated;
each gives different results based on how the data space is organized. Different
definitions of the extent of the study area, distortions caused by different map pro-
jection systems, or even different map scales at which data were collected often
lead to different results. It is important to realize that there is no one correct way
of finding the center of a spatial distribution. There are appropriate methods for
use in various settings, but there is probably no single correct method suitable for
all situations. Therefore, the interpretation of the result of calculating the center
of a'spatial distribution can only be determined by the nature of the problem.

To describe a point distribution, we will discuss a series of point descriptors
in this chapter. For central tendency, mean centers, weighted mean centers, and
median centers provide a good summary of how a point set distributes. For the ex-
tent of dispersion, standard distances and the standard ellipse measure the spatial
variation and orientation of a point distribution.

2.2.1 Mean Center

The mean center, or spatial mean, gives the average location of a set of points.
Points may represents water wells, houses, power poles in a residential subdivi-
sion, or locations where landslides occurred in a region in the past. As long as a
location can be defined, even with little or no areal extent, it can be represented as
a point in a spatial database. Whatever the points in a spatial database represent,
each point, p;, may be defined operationally by a pair of coordinates, (x;, y;), for
its location in a two-dimensional space.

The coordinate system that defines the location of points can be quite arbi-
trary. Geographers have devised various map projections and their associated co-
ordinate systems, so the locations of points in space can be referred to by their
latitude/longitude, easting/northing, or other forms of coordinates. When work-
ing with known coordinate systems, the location of a point is relatively easy to
define or even to measure from maps. There are, however, many situations requir-
ing the use of coordinate systems with an arbitrary origin as the reference point.
Arbitrary coordinate systems are often created for small local studies or for quick
estimation projects. In those cases, the coordinate system needs to be carefully
structured so that (1) it orients to a proper direction for the project, (2) it situates
with a proper origin, and (3) it uses suitable measurement units. For more detailed
discussion of these selections, interested readers may refer to the monograph by
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TABLE 2.1 Ohio Cities from the Top 125 U.S. Cities and Their Mean Center

City Name Longitude in Degrees (x) Latitude in Degrees (y)
Akron —81.5215 ” 41.0804
Cincinnati —84.5060 39.1398
Cleveland —81.6785 41.4797
Columbus —82.9874 39.9889

Dayton —84.1974 39.7791

n=3 3 x = —414.8908 >y =201.4679

—414.890 201.4679
Xme = ——5—8 = —82.9782 Viei— e 40.2936

Monmonier (1993). All these issues have to be taken into account so that the
resulting mean center will approximate its most appropriate location.

With a coordinate system defined, the mean center can be found easily by
calculating the mean of the x coordinates (eastings) and the mean of the y coor-
dinates (northings). These two mean coordinates define the location of the mean
center as

n n
Cfrnc: j;mc) = (—Zizl 5 f *‘Lj:l L ) s

n

where

Xme» Yme are coordinates of the mean center,
x;, y; are coordinates of point 7, and
n is the number of points.

As an example, Table 2.1 lists the coordinates of 5 cities in Ohio that are among
the 125 largest U.S. cities. Their locations are shown in Figure 2.1. The calculation
in Table 2.1 shows that the mean center of the five cities is located at —82.9782,
40,2936 or 82.9782W, 40.2936N. The star in Figure 2.1 identifies the location of
the calculated mean center. Since this mean center is defined by the mean- of x
coordinates and the mean of y coordinates, it is located at the geometric center of
the five cities, as expected. What it represents is the center of gravity of a spatial
distribution formed by the five cities.

2.2.2 Weighted Mean Center

There are situations in which the calculation of mean centers needs to consider
more than just the location of points in the spatial distribution. The importance of
individual points in a distribution is not always equal. In calculating the spatial
mean among a set of cities, the mean center may give a more realistic picture
of the central tendency if the mean center is weighted by the population counts
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Figure 2.1 Five Ohio largest 125 U.S. cities and their mean center with standard distance.

of these cities. The mean center is pulled closer to a city if the city’s population
is larger than the populations of the other cities being considered. Similarly, a
weighted mean center provides a better description of the central tendency than a
mean center when points or locations have different frequencies or occurrences of
the phenomenon studied. Given points representing the locations of endangered
plant species, it makes more sense to calculate their mean center by using the
sizes of plant communities at each location as weight of the points.

The weighted mean center of a distribution can be found by multiplying the
x and y coordinates of each point by the weights assigned to them. The mean of
the weighted x coordinates and the mean of the weighted y coordinates define the
position of the weighted mean center.

The equation for the weighted mean center is

Fome, Furms) = (Z?=1 Wixi i wz)’:‘)
wmce» by ] ]
e Yiowi L X wi

where
Twme» Ywme defines the weighted mean center,
and

w; is the weight at point p;.
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TABLE 2.2 Ohio Cities from the Top 125 U.S. Cities and Their Weighted
Mean Center

Longitude in Degrees Latitude in Degrees Population in 1990
City Name % y p
Akron —81.5215 41.0804 223,019
Cincinnati —84.5060 39.1398 364,040
Cleveland —81.6785 41.4797 505,616
Columbus —82.9874 39.9889 632,910
Dayton —84.1974 39.7791 182,044
Sum 3 x = —414.8908 3>y =201.4679 > p=1,907,629
Longitude x Population Latitude x Population
City Name ) xXxXp yXp
Akron —18,180,843.41 9,161,709.73
Cincinnati —30,763,564.24 14,248,452.79
Cleveland —41,297,956.46 20,972,800.00
Columbus —52,523,555.33 2,530,937.47
Dayton —15,327,631.49 7,241,546.48
Sum 3 xp = —158,093,550.90 3 yp =76,933,883.70
n=>5 ¥ xp = —158,093,550.9 > yp =76,933,883.7
L > xp  —158,093,550.9 — . xyp. 769338837
k= T o Abm sy Ywme = 5~ = 71,907,629
= —82.87 =40.33

In the case of the 5 largest 125 U.S. cities in Ohio, the mean center will be
shifted toward the Cleveland-Akron metropolitan area if the population sizes are
used as weights for the 5 Ohio cities. To calculate this weighted mean center,
Table 2.2 lists the coordinates as those of Table 2.1 and population counts in cities
in 1990.

The result shown in Table 2.2 gives the location of the weighted mean center as
—82.87, 40.33, representing a shift toward the northeast direction from the mean
center calculated in Section 2.2.1.
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Figure 2.2 Customized ArcView user interface.
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2.2.3 Median Center

Analogous to classical descriptive statistics of central tendency, the concept of the
median of a set of values can be extended to the median center of a set of points.
But the median in a geographical space cannot be defined precisely. According
to Ebdon (1988), the median center of a set of points is defined differently in
different parts of the world. In the British tradition, given a set of points, a median
center is the center upon which the study region is divided into four quadrants,
each containing the same number of points. However, there can be more than one
median center dividing the study area into four parts with equal numbers of points
if there is sufficient space between points close to the center of the distribution.
As this method leaves too much ambiguity, it has not been used extensively.

As used in North America, the concept of median center is the center of mini-
mum travel. That is, the total distance from the median center to each of the points
in the region is the minimum. In other words, any location other than the median
center will yield a total distance larger than the one using the median center. Math-
ematically, median center, (1, v), satisfies the following objective function:

Mini\/(xi —u)2+ (yi — v)?,
i=1

where x; and y; are the x and y coordinates, respectively, of point p; . If there are
weights attached to the points, a weighted median center can be derived accord-

ingly:

MinZ”: fi\/(—’ci —uP + (o —vP%
i=1

Please note that the weights, f; for p;, can be positive or negative values to reflect
the pulling or pushing effects of points to the location of the median center.
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To derive the median center, an iterative procedure can be used to explore and
to search for the location that satisfies the above objective function. The procedure
is as follows:

1. Use the mean center as the initial location in searching for the median cen-

ter. This is essentially setting (1, vg) equal to (Xme, Yme)-

2. In each iteration, ¢, find a new location for the median center, (u;, v;), by

Efixf/\/(xi —u1)? 4+ (i — ve-1)?
2 ff/w/(xa' — w12 + (i —vi-1)?

Ur

and

2 fl’)’i/\/({i’_ ur—1)% + (i — vr-1)?
Zfi/\/(xi —u—1)? + (i — v—1)? ;

Uy

3. Repeat step 2 to derive new locations for the median center until the dis-
tance between (u;, v;) and (u;_1, v;—1) is less than a threshold defined a pri-
ori.

Weighted
Spatial Median.

%

®bayton Columbus

ncinnati

Figure 2.3  Spatial median.
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2.3 DISPERSION OF POINT DISTRIBUTIONS

Similar to using measures such as standard deviations to assist an analyst in under-
standing a distribution of numeric values, standard distances or standard ellipses
have been used to describe how a set of points disperses around a mean center.
These are useful tools because they can be used in very intuitive ways. The more
dispersed a set of points is around a mean center, the longer the standard distance
and the larger the standard ellipse it will have.

Given a set of n data values, x;, i = 1, ..., n, the standard deviation, S, can

be computed as
T = Z?:l (xi — ‘_)2
V n

where X is the mean of all values. The standard deviation is literally the square
root of the average squared deviation from the mean.

2.3.1 Standard Distance

Standard distance is the spatial analogy of standard deviation in classical statis-
tics. While standard deviation indicates how observations deviate from the mean,
standard distance indicates how points in a distribution deviate from the mean
center. Standard deviation is expressed in units of observation values, but stan-
dard distance is expressed in distance units, which are a function of the coordinate
system or projection adopted.

The standard distance of a point distribution can be calculated by using the
following equation:

SD = Z?:l(xi 4 xmc)2 i+ Z;;;(Yi = ymc)2
n 1}
where (Xme, Yme) 1S the mean center of the point distribution.
Since points in a distribution may have attribute values that can be used as
weights when calculating their mean center or even their median center, it is also
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possible to weight the points with specified attribute values when calculating the
standard distance. For weighted standard distance, the following equation can be
used:

e \/ Ty fis — xme)? + %;1 fi = yme)?.
i=1Ji

where f; is the weight for point, (x;, y;).

Using the 5 Ohio cities selected from the list of 125 largest U.S. cities, the stan-
dard distance is derived and the associated standard distance circle is presented
in Figure 2.1. The steps for manually calculating the standard distance and the
weighted standard distance are shown in Table 2.3.

-~

TABLE 2.3 Standard Distance and Weighted Standard Distance of 5 Ohio Cities
from the Largest 125 U.S. Cities

Longitude in Degrees Latitude in Degrees Population in 1990
City Name x ¥y ' P
Akron —81.5215 41.0804 223,019
Cincinnati —84.5060 39.1398 364,040
Cleveland —81.6785 41.4797 505,616
Columbus —82.9874 39.9889 632,910
Dayton —84.1974 39.7791 182,044
e > x = —414.8908 >y =201.4679 3> p=1,907,629

—414. 467
Xme = —58?% = —82.9782, Vi 201—56—9 = 40.2936
City Name X — Xmc (x — xmc)z plx — xmc)2
Akron +1.4567 2.1220 473,246.3180
Cincinnati —1.5278 2.3342 849,742.1680
Cleveland +1.2997 1.6892 854,086.5472
Columbus —0.0092 0.0001 63.2910
Dayton —1.2192 1.4864 270,590.2016
o 7.6319 2,450,728.5260
City Name Y= Yme (& — ¥me)? p(y — Yme)?
Akron +0.7868 0.6191 138,071.0629
Cincinnati —1.1538 1.3313 484,646.4520
Cleveland +1.1861 1.4068 711,300.5888
Columbus —0.3047 0.0928 58,734.0480
Dayton —0.5145 0.2647 48,187.0468
» 3.7147 1,440,939.1990
(continued)
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TABLE 2.3 Continued.

Standard Distance

Step 1:

> - xme)? = 7.6319
3 (0 — yme)? =3.7147

Step 2:

SD = F?:l (i — xmc)” + i i — Yime)?
n

_ [76319+3.7147
e 5

11.3466
5

= +/2.2693
= 1.5064

Weighted Standard Distance
Step 1:
¥ pix— xme)? = 2,450,728.526

3" (o — yme)? = 1,440,939.199

Step 2:

Z{!:] fi(xi _xmc)2+z"l=1 f:'(yi *'ymc}2
SDy = . i
= \/ Yl

\/2,450,728.526 + 1,440,939.199
1,907,629

. [3891,661.15
= 1,907,629
2.0401 :
= 1.4283
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Different standard distance circles can be drawn for different types of events
or incidences in the same area. The same types of events or incidences can also be
drawn in different areas. All these can provide the basis for visual comparison of
the extent of spatial spread among different types of events or different areas. Be-
tween two neighborhoods with the same number of houses, the neighborhood that
has a longer standard distance is obviously spreading over more space geograph-
ically than the other neighborhood. Similarly, for all cities in a state, standard
distances will be different if their calculation is weighted by different attributes,
such as their population sizes. o

While similar applications can be structured easily, it is important to under-
stand that comparisons of standard distances between point distributions may or
may not be meaningful. For instance, the standard distance of Japan’s largest cities
weighted by population counts is calculated as 3.27746 decimal degrees, while it
is 8.84955 decimal degrees for Brazil’s largest cities. If the two standard distances
are used alone, they indicate that Brazil has a much more dispersed urban struc-
ture than Japan. However, given the very different sizes and territorial shapes of
the two countries, the absolute standard distances may not reflect accurately the
spatial patterns of how the largest cities spread in these countries.

To adjust for this possible bias, the standard distance may be scaled by the
average distance between cities in each country or by the area of each country or
region. Alternatively, the standard distances can be standardized or weighted by a
factor that accounts for the territorial differences of the two countries. In general,
standard distances can be scaled by a variable that is a function of the size of
the study areas. In this example, the weighted standard distances are 0.2379 and
0.0272 for Japan and Brazil, respectively, when scaled by their areas, indicating
that Japan’s largest cities are in fact more dispersed than Brazil’s cities.

2.3.2 Standard Deviational Ellipse

The standard distance circle is a very effective tool to show the spatial spread of a
set of point locations. Quite often, however, the set of point locations may come
from a particular geographic phenomenon that has a directional bias. For instance,
accidents along a section of highway will not always form a circular shape repre-
sented by a standard distance circle. Instead, they will appear as a linear pattern
dictated by the shape of that section of highway. Similarly, occurrences of algae
on the surface of a lake will form patterns that are limited by the shape of the lake.
Under these circumstances, the standard distance circle will not be able to reveal
the directional bias of the process.
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A logical extension of the standard distance circle is the standard deviational
ellipse. It can capture the directional bias in a point distribution. There are three
components in describing a standard deviational ellipse: the angle of rotation, the
deviation along the major axis (the longer one), and the deviation along the minor
axis (the shorter one). If the set of points exhibits certain directional bias, then
there will be a direction with the maximum spread of the points. Perpendicular
to this direction is the direction with the minimum spread of the points. The two
axes can be thought of as the x and y axes in the Cartesian coordinate system but
rotated to a particular angle corresponding to the geographic orientation of the
point distribution. This angle of rotation is the angle between the north and the y
axis rotated clockwise. Please note that the rotated y axis can be either the major
or the minor axis. Figure 2.4 illustrates the terms related to the ellipse.

The steps in deriving the standard deviational ellipse are as follows:

1. Calculate the coordinates of the mean center, (Xmc, Yme)- This will be used
as the origin in the transformed coordinate system.

2. For each point, p;, in the distribution, transform its coordinate by

/
X; = Xi — Xme

y; =¥ — ¥Ymc-

After they have been transformed, all points center at the mean center.
3. Calculate the angle of rotation, #, such that

i=1

tanf =

Figure 2.4 FElements defining a standard deviational ellipse.

n n n n 2 n n 2
(51-501)+ |(£48-21) +(E-E)
i=1 N\ i i
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tan § can be positive or negative. If the tangent is positive, it means that the
rotated y axis is the longer or major axis and rotates clockwise from north. If
the tangent is negative, it means that the major axis rotates counterclockwise
from north. If the tangent is positive, we can’simply take the inverse of
tangent @ (arctan) to obtain 0 for subsequent steps. If tangent is negative,
taking the inverse of the tangent of a negative number will yield a negative
angle (such as —x), i.e., rotating counterclockwise. But angle of rotation is
defined as the angle rotating clockwise to the y axis, therefore, 90 degrees
have to be added to the negative angle (i.e., 90 — x) to derive 9. With 6
from step 3, we can calculate the deviation along the x and y axes in the
following manner:

5 ‘/2?31 (x/cos® — y;sin 6)2
X —

n

Vi

and

5 \/ii-;] (x/sin@ — y] cos 9)2
Y s
n

2.4 APPLICATION EXAMPLES

We have discussed the concepts and background of a set of centrographic mea-
sures for analyzing point data. Although these measures are very useful in ana-
lyzing point data, they have not been used as widely as expected. We can still
find many examples using these geostatistics in various research publications or
applications. After each census in the United States, the Bureau of the Census cal-
culates both the mean center and the median center of the entire U.S. population.
Between censuses, the estimated mean center and median are also reported (for
example, in the Census, 1996). By plotting the mean centers and median centers
for each census year in the past century, it shows that the center of the U.S. popu-
lation has been moving from the Northeast (Maryland and Delaware) to the West
and the Southwest. Today the mean center is somewhere near St. Louis, Missouri.
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Thapar et al. (1999) calculated mean population centers of the United States
at two different geographical scales: census regions and states. By comparing the
mean centers over different censuses, the results help us to depict the gross pat-
tern of population movement at different spatial scales. Thapar et al. (1999) also
reviewed several other studies using mean center as a descriptor tool for point
data. In another example, Greene (1991) was concerned about the spread of eco-
nomically disadvantaged groups over time. After deriving the standard distances
of these population groups for different cities, Greene created circles based upon
the standard distances to compare the location and geographical spread of these
groups in several cities over time. In a completely different context, Levine et
al. (1995) applied standard deviational ellipses to compare different types of au-
tomobile accidents in Hawaii. This study was done to decide if there was any
directional bias among the types of accidents. The authors ultimately were able
to provide a prescription for the local authority to deal with some “hot spots.”
By fitting an ellipse to a specific ethnic group, different ellipses are derived for
different groups. These ellipses can be laid over each other to indicate the extent
of their spatial correspondence. Using this idea, Wong (1999) recently derived a
spatial index of segregation. The ellipse-based index was also used to study the
spatial integration of different ethnic groups in China (Wong, 2000).

The articles reviewed above are not meant to be an exhaustive list. Readers can
identify additional studies using these measures. To illustrate how these measures
can be used in ArcView-accompanied Avenue scripts incorporated into the project
file (CH2 . APR) in this book, a point data set will be analyzed to show how these
statistics can be use for real-world data.

2.4.1 Data

The point data set has been selected from the U.S. Environmental Protection
Agency Toxic Release Inventory (EPA, 1999). The details of this database and
related data quality issues are presented on EPA’s website (hitp://www.epa.gov),
so they will not be discussed here. Interested readers should carefully review all
the data documentation and metadata before using this database in formal anal-
ysis and research. In brief, the TRI database is organized by state. Submitted to
the EPA by each state government for the TRI database is the information about
facilities that produce certain types of substances and chemicals that are known to
be hazardous to the environment and the well-being of humans. The TRI database
lists the facilities and their characteristics, such as chemicals released to the en-
vironment through various channels, together with their locations expressed in
longitude and latitude.

We will focus on the TRI facilities in the state of Louisiana. Like most
databases, the TRI database also has errors in positional accuracy. After sites
with erroneous locational information are eliminated, there are 2,102 records in
the Louisiana database. Among these 2,102 records, there are 234 types of chem-
icals. For the purpose of this exercise, only the longitude, latitude, and chemical
information were extracted from the database to be imported into ArcView.
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2.4.2 Analyses: Central Tendency and Dispersion

Although more than 200 types of chemicals are reported in the Louisiana TRI
database, it is obvious that some chemicals concentrate in specific locations rather
than spreading evenly across the state. The set of statistics described in this chap-
ter can help explore the spatial characteristics of this point data set. Conceptually,
we could derive a mean center, a standard distance and the associated circle, and
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Attributes of La_tri.shp
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' Paoint 32.007500:  -93.986844: CREOSOTE

. Paint 32904324 -93.981918: TETRACHLOROETHYLENE
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|| Paint 32877222 -93.975278: STYRENE
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| Paint 32.618056: -93.924167 : AMMONIA

| Paint 32618056 -93924167 i CHLORINE

| Point 32.618056;  -93.924167 : ETHYLBENZENE

| Paoint 32.618056;  -93.924167 : HYDROCHLORIC ACID

! Paint 32.618056: -93.924167 : MOLYBDENUM TRIOXIDE

| Paoint 32.618056:  -93.924167 : NN-DIMETHYLFORMAMIDE

| Paint 32.618056: -93.924167  NICKEL COMPOUNDS

" Paint 32618056  -93.924167 i NITRATE COMPOUNDS

| Point 32.618066:  -93.924167 : NITRIC ACID

| Point 32618056  -93.924167 : PHOSPHORIC ACID

| Point 32.618056: -93.924167 : TOLUENE

- Paint 32433333 -93.908333 ! 1.2 4-TRIMETHYLBENZENE

" Point 32.433333: -93.908333: CERTAIN GLYCOL ETHERS

' Point 32433333 -93.908333 : CHROMIUM COMPOUNDS

 Paint 32433333 -93.908333 : COPPER COMPOUNDS
Paint 32.433333:  -93.908333: CRESOL MIXED ISOMERS)

| Point 32.433333 . -93.908333  MANGANESE COMPOUNDS

 Point 32.433333 ;. -93.908333 : NICKEL COMPOUNDS

" Paoint -93.908333 : PHENOL
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Figure 2.5 Portion of the ArcView attribute table showing the TRI data of Louisiana.

a standard deviational ellipse for each chemical. To illustrate the utility of the
geostatistics and associated concepts, we choose only two chemicals: copper and
ethylene. Using the Avenue script built into the project file CH2 . APR, a mean
center was created for each chemical. Based upon each mean center, a standard
distance was derived for each of the two chemicals. With the standard distances
as radii, two standard distance circles were drawn. The results are shown in Fig-
ure 2.7.

In Figure 2.7, all the TRI sites are included, with those releasing copper and
ethylene represented by different symbols. Also note that some symbols are on
top of each other because those facilities released multiple chemicals. As shown in
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CHLORINE 761 78.000000 -
AMMONIA, 761 76.000000
TOLUEMNE 76:  76.000000
ME THANOL 751 75000000 i
RYLENE (MIXED ISOMERS) 64:  £4.000000 By
PHOSPHORIC ACID 56: 55.000000
HYDROCHLORIC ACID 54 54000000
ZINC COMPOUNDS _R21 52000000

BENZENE 45 45000000
ETHYLBENZENE 44 44000000

- ETHYLEME 44744000000

N-HEXANE 40 40000000

"SULFURIC ACID 38 38.000000

 NAPHTHALENE 381 38.000000
METHYL ETHYL KETONE 36 36.000000

PROPYLENE 347 34000000
NITRATE COMPOUNDS 347 34000000

_FORMALDEHYDE 321 32000000

CSTYRENE 37 32.000000

. CERTAIN GLYCOL E THERS 30 30.000000
PHEMNOL 29 29000000
ETHYLENE GLYCOL 28 28000000

1.2 & TRIMETHYLBENZENE 28 28000000
NICKEL COMPOUNDS 271 27.000000

| CYCLOHEXANE 241 24000000
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Figure 2.6 Portion of the table summarizing the TRI table by chemicals.

Figure 2.7, most TRIs releasing copper are found in the central and northwestern
portions of the states, while most TRIs releasing ethylene are closer to the Gulf
of Mexico. A comparison of the mean centers for the two sets of points shows
that in general, TRIs releasing copper are mostly located in areas northwest of
the TRIs releasing ethylene. But as indicated by the two standard distance circles
(1.605 for copper and 1.159 for ethylene as their radii), the standard distance
circle for copper TRIs is larger than the one for ethylene TRIs. In other words,
TRIs releasing copper are geographically more dispersed in the northwestern part
of the state than those releasing ethylene concentrating in the southeast.
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Figure 2.7 Spatial means and standard distances for TRIs in Louisiana releasing copper
and ethylene.

In this example, because the two sets of points are from the same geographical
region, we do not have to make any adjustment in the geographical scale when
we compare the two standard distance circles.
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2.4,3 Analyses: Dispersion and Orientation

In addition to mean center and standard distance circles, we can analyze the two
sets of points using the standard deviational ellipses. Figure 2.8 shows the two
ellipses indicated by their axes. The angle of rotation (i.e., the angle from north
clockwise to the axis) for the copper ellipse is 44.6 degrees, while for the ethylene
ellipse the angle of rotation is only 6.39 degrees. Obviously, the ellipse for ethy-
lene TRIs follows an east-west direction and is relatively small compared to the
ellipse for copper TRIs, which is larger and follows a northwest-southeast direc-
tion. The difference in orientation of these two sets of points is clearly depicted
by the two ellipses.

1 4 o [} Louisiana
. S e TRIs in Louisiana

& X « Other TRIs
tL ] ase +* o Copper TRIs
3 Ethylene TRIs

Ellipse for Copper TRIs
/\/ Bllipse for Ethylene TRIs

Figure 2.8 The standard deviational ellipses for TRIs releasing copper and ethylene.
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Even though centrographic measures are very useful in extracting spatial pat-
terns and trends in point sets, there are pitfalls readers should be aware of. First,
the statistics may be limited by the boundary effect. In the example here, TRI
facilities may not follow state lines between Louisiana and its neighboring states,
and the use of the state boundary here may or may not cut off the distribution of
TRI facilities. The decision to use this boundary normally requires careful con-
sideration, as the orientation of the boundary may force the point distribution to
have spatial patterns that do not exist in reality.

No matter how carefully the analysis is performed, if the data are not properly
sampled or properly processed, biased or inaccurate results will cause analyst
to make incorrect decisions. This is particularly true in geo-referenced data. For
point data, the analyst should explore whether or not the attribute values of any
given point are affected by the neighboring points in some way. That is, the analyst
must determine if the set of points contains any spatial pattern that is worthy of
study.

In later chapters, we will discuss methods for detecting and measuring such
spatial patterns. The methods discussed in this chapter are descriptive. They are
used to describe and compare point sets as the first step in geographic analysis.
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