Dr. Zhenming Wang /DOGAMI

Earthquake Hazard and Mitigation in Oregon
Concentrated on Western Oregon - nobody lives in Eastern Oregon

Abbreviations: SJF - San Juan de Fuca
 NA - North American
 EQ - Earthquake

• Tectonic Setting and Earthquake
 • Earthquake source Zones, in the Pacific NW.
 • SJF plate subducting under NA Plates
 • 3 types earthquake
 • Interplate subduction: earthquake 8-9 Richter
 • Intraplate Earthquake up to 7.5 (inside of SJF plate) (no history in Oregon)
 • seen in Puget Sound, severe damage to Seattle/Tacoma
 • Crustal Earthquake to 6.5 (under our feet)
 • Portland Earthquake Sources (Triple Threat)
 • Upper plate (NA) Moderate magnitude
 • Lower plate (SJF) large magnitude
 • Subduction – locked subduction zones
 • Fault zones around Portland (a map)

• Earthquake Hazards
 • Ground Motion (Shaking Hazard)
 • 90% damage caused by ground shaking
 • Willamette HS. (Eugene) took major damage to brick buildings in 1993 Spring Break EQ. (photo of damaged brick building)
 • Had to retrofit Capitol Dome for damage in that EQ.
 • Capitol Building location of State Governor, Senate, House - nothing like slapping a politician in the face with a wet fish to get his attention.
 • Major policy changes came out of that EQ.
 • Liquefaction Hazard
 • always happens during major earthquakes
 • buildings on soil that liquefies, fall over (Taiwan photo).
 • Lateral spreading (this is when Tammy came in the room) everything pulls apart.
 • Landslide Hazard
 • induced by ground shaking
 • sides of hills sunk (photos of Loma Prieta CA coast, Taiwanese hills)
 • ’65 Olympia - railroad embankments collapsed
 • steep slopes fail in land and rockslides. Road cuts are very vulnerable.
 • Tsunami Hazard (Coast)
 • “Tidal Wave”
 • Secondary Hazard
 • Fire
 • think of all the natural gas pipelines busted...
 • Hazmat leakage

• Earthquake Hazard Mapping
 • We aren’t in California - it can happen here, but awareness isn’t there.
• Geology/Geotechnical engineering combines to create hazard maps
• Areas that will get hit hard can be mitigated prior to event
• We saw these maps in class Tuesday

• Ground Shaking Mapping
 • General Ground Shaking Hazard (ground motion on bedrock from all seismic sources)
 • Probabilistic Method - building codes set on this
 • Deterministic Method - used on critical structures to determine max ground shaking hazard would occur.
 • Maps show the recurrence intervals in “probability”
 • Highest ground shaking hazard is on coast due to subduction EQ’s..
 • 500 year recurrence interval... Willamette Valley is about 50% curve
 • Monmouth is at 20-25% on 500 year

• Relative Seismic Hazards Maps
 • Composite maps “relative sense of hazard”
 • Amplification
 • Soil Characterization (SPT, S-wave velocity and thickness)
 • Ground shaking hazard
 • Liquefaction
 • Soil Characterization (SPT, S-wave velocity and thickness)
 • Sandy soil?
 • Induced Landslide
 • Soil and Rock Characterization (cohesion, friction angle, degree of weathering , fracture
 • slope failure potential
 • Liquefaction potential mapping
 • Soil Characterization (SPT, S-wave velocity and thickness)
 • Sandy soil?
 • Landslide mapping
 • Soil and Rock Characterization (cohesion, friction angle, degree of weathering , fracture
 • slope failure potential
 • Tsunami inundation mapping
 • combination of theoretical model and study of past tsunami’s.
 • Look at ground contour
 • Seaside will be underwater... temporarily.

• Earthquake Hazard Mitigation
 • Public Awareness
 • We’ve got the potential, prepare for it
 • Legislation
 • Building Code
 • UBC 97 - good building code, very advanced compared to other states.
 • Regulation
 • Education
 • Mandatory Tsunami drills on a yearly basis at schools in hazard zone
 • Retrofit/Rehabilitation
 • Campbell Hall “shock absorbers”
 • Insurance
 • It’s available, get it.
 • In Portland, ~30% families have it.
 • Emergency Planning and Response
 • use the info we have.
• WOU, Monmouth, Independence - Earthquake Hazard map specific to this area.
• >1000 students in dorms: Butler, Campus Estates...etc..
• This guy was on the team that made the hazard assessment
• Stuff is in GIS - 3D modeling GET THIS!!!
• Combined 3 layers of hazard, assigned numeric hazard assessment.
 • Very general assessment, without specific threats.
 • 1st layer - Ground Motion & Amplification
 • Willamette Silt is what we sit on.
 • 2nd Layer - Liquefaction
 • moderate to low hazard with Willamette Silt (rather surprising)
 • 3rd Layer - Landslides
 • It’s flat here.
• Campbell Hall
 • Seismic retrofit - base isolation
 • Otherwise, brick is a concern

Base isolation -
 when ground shakes, so does building. Base isolation lets the shock absorbers shake instead.

Hazard here:
 Ground shaking: Moderate (D type soil 1.5-1.8 on UBC)
 Liquefaction: Moderate (fine-grained Willamette Silt, water close to surface)
 Too flat for landslide problems.

 Intraplate EQ’s - why not? We don’t have a record, or activity that showed it.