Ch 420 - Final Exam Outline
Spring 2004

- **Statistics**
 - histograms
 - Gaussian distributions
 - mean and standard deviation (know how to calculate these)
 - accuracy and precision
 - normal error curves
 - 1 and 2-sided distributions
 - using the area under the normal error curve to calculate probabilities

- **UV-Vis Spectroscopy**
 - qualitatively know the electromagnetic spectrum including direction of increasing energies, frequencies, and wavelengths
 - know how to use the equations \(\nu = \lambda / \lambda \) and \(E = h\nu \)
 - understand how an electron can change energy levels
 - electronic, vibrational and rotational energy levels
 - know the color wheel and how to determine what colors are absorbed by a molecule
 - basic parts of a UV-Vis spectrometer
 - applications to forensics - identification
 - applications to forensics - quantification
 - transmittance: \(T = P / P_0 \)
 - absorbance: \(A = -\log(P/P_0) \)
 - Beer-Lambert law: \(A = \varepsilon bc \)
 - calibration curves - blank and replicates
 - limit of detection LOD = \(3\sigma_b / \text{slope} \)

- **The Arson Investigation**
 - Chemistry and Behavior of Fire or Explosion - Fire and the Fire Tetrahedron
 - Fuel
 - Heat
 - Oxygen
 - Chemical Chain Reaction
 - Accelerants and sampling
 - Accelerant recovery from debris (laboratory procedure)
 - Gas Chromatography-Mass Spectrometry (GC-MS) - know the basic parts of the instrument such as the oven, injection ports, columns, ionization chamber, quadrupole, electron multiplier detector
 - Total Ion Chromatograms (TIC) and Selected Ion Chromatograms (SIC)
 - Accelerant Classification System (do not memorize)
 - Know the major compounds found in gasoline, turpentine, and kerosene
 - Difference in the TIC between standard and evaporated samples
 - From the Arson Lab - questions from the article "Chemical Analysis of Fire Debris", Wolfgang Bertsch, *Analytical Chemistry News & Features*, September 1, 1996, p. 541A.
- **Gunshot Residue Analysis**
 - Priming mixture - lead styphnate primary explosive, \(\text{Ba(NO}_3\text{)}_2 \) oxidant, \(\text{Sb}_2\text{S}_3 \) fuel, lead-free primer = diazo-dinitrophenol (DDNP)
 - Smokeless powder - single-based (nitrocellulose) and double-based (nitrocellulose + nitroglycerin)
 - Stabilizer = diphenylamine
 - Detection of gunshot residue on hands - dermal nitrate test = nitrates + diphenylamine + \(\text{H}_2\text{SO}_4 \) → blue color
 - Netron Activation Analysis (NAA) and Atomic Absorption Spectroscopy - know generally how these techniques work
 - Gunshot Residue Analysis by GC-MS - know the cold column injection procedure
 - Solid Phase Extraction (SPE)

- **The Determination of Alcohol**
 - Basic properties of ethanol (polar, b.p. = 78.5 °C, low vapor pressure = 60 Torr)
 - Widmark ratios
 - Alcohol in the Circulatory and Pulmonary Systems
 - Henry’s Law and blood/air = 2100
 - Collection of Blood Samples - fluoride (F⁻) and EDTA anticoagulants, fluoride (F⁻) preservative
 - Analysis for Alcohol in Blood by Headspace GC-MS
 - Analysis for Alcohol in Breath - Breathalyzer vs. the Intoxilyzer, false positives

- **Forensic Applications of Infrared Spectroscopy**
 - Basics of IR Spectroscopy
 - where in the electromagnetic spectrum
 - wavenumbers
 - normal modes
 - infrared spectrum
 - Fourier Transform IR (FTIR)
 - Diffuse Reflectance Infrared Fourier Transform Spectrometry (DRIFTS)
 - Attenuated Total Internal Reflectance (ATR) Spectrometry
 - Applications of DRIFTS and ATR
 - Infrared Microscopy and it’s Applications
 - Transmission versus Reflectance configuration
 - Cassegrainian optics
 - ATR accessory
 - Example applications – fibers, paints, questioned documents

Forensic Identification of Controlled Substances

- Controlled Substances Act - schedules, substances found in certain forms = whole plant, tablets & capsules, general unknowns
- Schedule of Controlled Substances *(don’t memorize)*
- The General Unknown:
 - preliminary visual examination
 - weighing of all exhibits
 - selection of representative samples
 - screening tests = spot tests *(know)*
 - microscopic tests
 - spectrophotometric tests
 - separation tests
 - confirmatory tests
 - quantitative analysis
 - other tests

Restoring Serial Numbers in Metal Objects

- physical and chemical basics if using steel (like in the lab)

Luminol and Chemiluminescence

- definition of chemiluminescence, singlet vs. triplet states
- Detection of Latent Bloodstains Using Luminol
 - oxidation in base
 - product formed in excited electronic state
 - fluorescence at 425 nm (blue)
 - oxidants (sodium borate, etc) and auxiliary oxidants (hemoglobin, etc)
- Synthesis of luminol - *(don’t memorize reaction)* but know the purpose of each reagent and where it acts chemically
- False positives and their elimination

Atomic X-Ray Spectrometry

- Emission of X-Rays – Electron Beam Source
- Continuum and Line Sources
- Line Spectra (K, L, M...)
- Origin of X-Ray Line Spectra
- Radioactive Sources
- Absorption Spectra, Mass Absorption Coefficient, and Beer’s Law
- X-Ray Fluorescence
- Diffraction and Bragg’s Law
- Photon Counting
- Wavelength Dispersive versus Energy Dispersive Instruments

Recent Topics in Forensic Chemistry

- X-Ray Fluorescence: Colored polyethylene bags, Trace Elemental Analysis of Drugs of Abuse
- Homeland Defense: Electronic Noses (PowerPoint Lecture) – chromophore quenching sensors, fiber-optic bead sensors, SAW detectors