Differentiated Curriculum

CHALLENGING HIGH END LEARNERS:
ADDRESSING OREGON
STANDARDS AND BENCHMARKS

SECTION I
INTRODUCTION

OREGON DEPARTMENT OF EDUCATION
OFFICE OF SPECIAL EDUCATION
TALENTED AND GIFTED
2003
Differentiated Curriculum

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>PURPOSE AND ACKNOWLEDGMENTS</td>
<td>3</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>4</td>
</tr>
<tr>
<td>MEETING THE NEEDS OF THE TALENTED AND GIFTED</td>
<td>7</td>
</tr>
<tr>
<td>ORIENTATION TO DOCUMENT</td>
<td></td>
</tr>
<tr>
<td>EDITOR'S MESSAGE</td>
<td>9</td>
</tr>
<tr>
<td>GLOSSARY</td>
<td>10</td>
</tr>
<tr>
<td>EXPLANATION OF COMPONENTS OF EACH SAMPLE</td>
<td>12</td>
</tr>
<tr>
<td>WHY SO MANY NUMBERS</td>
<td>13</td>
</tr>
<tr>
<td>EXPLANATION FOR TAG PLAN</td>
<td>14</td>
</tr>
<tr>
<td>LIST OF SECTIONS I-IX</td>
<td>15</td>
</tr>
<tr>
<td>TEMPLATE FOR CREATING DIFFERENTIATED CURRICULUM</td>
<td>16</td>
</tr>
</tbody>
</table>
The purpose of this project is to develop samples of differentiated curriculum across content areas that challenge high-end learners while addressing the Oregon Standards and Benchmarks/Grade Level Standards. The Oregon Department of Education (ODE) Talented and Gifted (TAG) Office sponsored the work. The final project is intended for all school districts, being available on a CD, in a notebook and also on the (ODE) Website.

The following Oregon educators have given their time and energy toward the development of this document. Without their contributions, this document could not have been written.

A special thank you to Portland Public Schools TAG staff and science teachers on special assignment. TAG hosted the four day fall workshop and the science projects were critiqued by the science team in the spring.
INTRODUCTION

A RATIONALE FOR NATIONAL/STATE STANDARDS

Why the need for standards? Fundamentally, there are several reasons for education to seek such curriculum coherence. One of these reasons has to do with assessing quality in curriculum (Vinovskis, 1996). How do we know that students are learning what they need to for high level functioning in the 21st century? Over ten years of work went into the development of the standards by national groups who were broadly representative of the professions and the educational community at several levels. This input was further shaped by public comment on multiple drafts. Such thoughtful consideration for what America's students should be learning has not occurred since the 1960's and perhaps even was overdue in some respects.

A second reason that standards are important is to ensure educational quality across school districts and schools within districts. Every student has a right to have a challenging curriculum and to receive pedagogical supports to master it effectively. The new standards call for systemic implementation that leaves no one behind (Wang, Haertel, & Wallace, 1993). Another reason that standards matter is more philosophical. We all need guideposts to mark our way. The standards provide just such focus for meaningful work in education to occur. They are designed from the top down, meaning that the model of the adult professional competencies is embedded in them and allows us to work on optimizing the knowledge, skills, and attitudes of our best learners through a focus on behaving like a mathematician, a scientist, a writer and a geographer. All other industrialized countries adhere to a standard curriculum template within which teachers focus on instructional delivery techniques that work. Only in the United States do we ask teachers to develop, deliver, differentiate, and assess curriculum - - all while managing inclusion classrooms. Sharper focus would necessarily improve teaching and deepen the learning for students.

THE STANDARDS AS CORE CURRICULUM FOR THE GIFTED

Linkage to the curriculum reform movement on the part of gifted educators requires embracing the traditional content dimensions as core areas of learning for the gifted at all levels K-12, rather than treating these areas as peripheral especially at the elementary level. Why should we move to a content-based instructional model for the gifted? There are several valid reasons. Schools are organized by basic content areas and so to deviate significantly from these areas is to be outside a predominant organizational pattern that aids communication on gifted issues within the school system. It also provides the natural context for planning curriculum since school systems even those with self-contained programs for the gifted, are obligated to show mastery of basic skills for gifted students in these subject matter areas. Moreover, gifted students are spending the majority of their instructional time in the traditional subject matter disciplines. Thus the impact of programs for the gifted is severely limited by ignoring content, as is the appropriateness of a significant amount of learning time.

At a social level, knowledge is organized in discipline-specific ways. We study disciplines in college; we organize our professions around key learning areas; clearly our knowledge producers are content-experts. Nobel prizes are given in physics, chemistry and literature, not in constructing an electrical car. Many significant products of civilization are discipline-specific (the best novel, the most beautiful piece of music, the most wondrous painting). Howard Gardner (1999) eloquently defends the role of the disciplines in shaping school curriculum, suggesting its central authority in the enterprise:

"I do not believe that there is any definitive version of truth, beauty, or goodness; these virtues are consistently being defined and debated. I favor the greatest flexibility in how these "virtues" are presented to children and how their emerging understandings are probed and
documented for purposes of accountability. However, only one group has been centrally committed to these topics: the scholars and practitioners who are truly expert in the several disciplines. They master the work of the past and they contribute to our future schemes of knowledge. To deny them the central role in the curriculum is to perform Hamlet without the titled personage... The disciplines play the central role in the endeavor. They are the chief determiners of which understandings are worth achieving, but more important, they furnish ways in which students can in the future approach questions, concepts, and theories.”

Thus society continues to organize learning and define societal progress around distinct knowledge bases or domains.

Our current research base on conceptions of giftedness also lends credence to a content-specific curriculum model of organization. Gagne (1999), Csikszentmihalyi (1996), and Bloom (1985) all conceptualize giftedness as domain-specific. Our studies of eminent individuals further speak to contributions in a given area of talent (Simonton, 1994). Research on teaching and learning also suggests the importance of wedding higher-level skills to content in order to enhance transfer effect (Sternberg & Williams, 1998; Perkins & Salomon, 1989). Thus the argument for discipline-specific curriculum for the gifted creates an added rationale for strong linkages to the curriculum reform movement.

ASSESSING THE NEED FOR DIFFERENTIATION OF STANDARDS

Before adaptation strategies can be stated, it is important to acknowledge the types of differentiation features that should characterize any curriculum to be used with gifted learners. Such a curriculum should always have the following five elements in order to make it appropriate: acceleration, complexity, depth, challenge, and creativity. Yet individual standards may only contain one element as long as the total curriculum in that area addresses the entire list. It also is highly likely that a given standard may have several of the differentiation features listed. The checklist that follows has been designed to provide educators a quick way to assess each curriculum standard in respect to its appropriateness for the gifted.

By using this checklist, educators can ascertain how much modification of a standard may be necessary. The list also provides for translating standards into archetypal activities.

DIFFERENTIATION FEATURES CHECKLIST

Acceleration – Students are:
- Assigned fewer tasks to master standard of learning
- Assessed earlier or prior to teaching
- Clustered by higher order thinking

Complexity – Students:
- Use multiple higher-level skills
- Have additional variables to study
- Use multiple resources

Depth – Students:
- Study a concept in multiple applications
- Conduct original research
- Develop a product

Challenge – Students:
- Use advanced resources
- Use sophisticated content stimuli
- Make cross-disciplinary applications
- Make reasoning explicit
INTRODUCTION CONTINUED

Creativity – Students:
- Design and/or construct a model based on principles or criteria
- Provided alternatives for tasks, products, and assessments
- Present oral and written communication to a real world audience

Only through a thoughtful implementation of a standards-based curriculum, adapted and modified for gifted learners, will teachers of the gifted be able to defend their practice. Gifted education then becomes a part of general education reform, not an endeavor separate from it.

STANDARDS OF LEARNING AND GIFTED EDUCATION: GOODNESS OF FIT

Van Tassel-Baska, J. (2002) Standards of Learning and Gifted Education: Goodness of Fit Virginia Association for the Gifted Newsletter

Standards are very broad, some are deep, and there is much latitude for creative teachers to implement the standards at appropriately high levels to satisfy the needs of gifted students under their tutelage. While gifted students may show mastery of many of the standards at an earlier stage of development than currently designated, testing-out mechanisms need to be in place to accommodate this recognized reality (United States Department of Education, 1994). Moreover, teachers need to reorganize strands across grade levels to also streamline the curriculum.

Gifted education clearly is not exempt from this emphasis on standards-based reform. Educators must view the standards movement as an opportunity to upgrade what they do as well and go through the standards to do it, not around them.

What then are some strategies that teachers might employ to implement the standards more efficiently with gifted students? They constitute the following:

1. Organize them according to higher order skills and teach across subject areas (e.g., reasoning, communication, research, technology). (See Section VI Models and Graphic Organizers.)

2. Use the essence of the standards as a rubric for assessing learning (e.g., writing, research).

3. Recognize that many of the standards focus on higher-level thought (e.g., history strand in social studies, research strand in language arts, scientific investigation, reasoning, and logic strands in science, probability and statistics strands in math).

4. Select core models to use in implementing key process skills embedded in standards (e.g., historical analysis web, lit web, hamburger model, experimental design). (See Section VI Models and Graphic Organizers.)

5. Address the skills in the standards repeatedly by using archetypal models over and over again. (See Glossary, p. 9.)

6. Select materials that address the intent of the standards, not just the content.

7. Use performance-based assessment as an instructional tool to gauge student mastery levels. Re-teach or extend as needed. (See Section VII Standards and Assessments.)

8. When gifted students exceed standards at given stages of development, accelerate them to the next level within or across subjects; within or across levels. Use learning centers and relevant materials to enhance extended learning opportunities such as thinking skills models and graphic organizers. (See Section VI Models and Graphic Organizers.)

9. Read and interpret standards across grade levels. Be familiar with the standards 1-3 grades above yours and develop advanced task demands for the gifted from them.

10. Always consider ways to integrate learning across standards such as integrating science, math, technology and language arts into a given project.

11. Consider ways to personalize learning and prepare students for “next steps” after high school.

12. Consider ways to embed the fundamental skills from the Oregon Career-Related Learning Standards (CRLS) of the Certificate of Advanced Mastery (CAM) (i.e., Personal Management, Problem Solving, Communication, Teamwork, Employment Foundations, and Career Development. (See Section VII Standards and Assessments.)

Dr. Joyce VanTassel-Baska is the Jody and Layton Smith Professor of Education at the College of William and Mary in Virginia, where she has developed a graduate program and a research and development center in gifted education.
MEETING THE NEEDS OF THE TALENTED AND GIFTED
Laura Pehkonen, Kentucky Department of Education

INTELLECTUALLY GIFTED

1. Intellectual
 a) Opportunity for advanced level critical reasoning
 b) Regular scholarly interaction with others of like ability
 c) Pursuit of advanced level research interests; access to challenging resources; encounters with solving real problems

2. Academic
 a) Continuous progress at advanced level and rate of instruction in content area(s) of interest (usually at least one year beyond grade level)
 b) Advanced level vocabulary development instruction

3. Creative
 a) Training in application of sophisticated creative thinking/problem-solving strategies and opportunities to apply to areas of interest; may need special emphasis on flexibility and use of multiple perspectives, such as required in debating or creative problem-solving applications

4. Leadership
 a) Training in effective leadership techniques related to possible societal role(s)

5. Social/Emotional and Counseling
 a) Regular interaction with other intellectually gifted students to provide support system which values high-level achievement and unique interests and perspectives
 b) Setting realistic goals and standards for self and others; special counseling needed for perfectionism, underachievement, and stress management
 c) Opportunities for competition; experience dealing with “failure”
 d) Dealing with the dilemma of acceptance vs. high achievement; understanding anti-intellectualism; coping strategies
 e) Academic planning and counseling tailored to high-ability students

ACADEMICALLY TALENTED MATH

1. Academic
 a) Continuous progress at advanced level and rate of instruction in mathematics; usually includes minimum of completion of algebra or equivalent by end of grade 8

2. Creative
 a) Opportunity to explore and apply advanced creative thinking and problem-solving strategies in math

3. Leadership
 a) Training in effective leadership techniques, especially as related to math; career goals
 b) Exploration of possible leadership roles in math-related fields
 c) Effecting change in contexts related to interest areas
 d) Responsible use of influence

4. Social/Emotional and Counseling
 a) Opportunities for competition; experience dealing with “failure”
 b) Dealing with dilemma of acceptance vs. high achievement; understanding anti-intellectualism
 c) Academic planning and counseling tailored to high-ability students

Educators must focus on the intellectual, academic, creative, leadership, social/ emotional and counseling needs of TAG students.
MEETING THE NEEDS OF THE TALENTED AND GIFTED CONTINUED
Laura Pehkonen, Kentucky Department of Education

ACADEMICALLY TALENTED
READING/LANGUAGE ARTS

1. **Academic**
 a) Continuous progress at advanced level and rate of instruction in Reading/Language Arts; literature and vocabulary development approximately 1-2 years beyond grade level

2. **Creative**
 a) Opportunity to explore and apply advanced creative thinking and problem-solving strategies in literature and language arts

3. **Leadership**
 a) Training in effective leadership techniques related to reading/language arts; career goals
 b) Exploration of possible leadership roles and effective leadership styles
 c) Effecting change in contexts related to interest areas
 d) Responsible use of influence

4. **Social/Emotional and Counseling**
 a) Opportunities for competition; experience dealing with “failure”
 b) Dealing with dilemma of acceptance vs. high achievement; understanding anti-intellectualism
 c) Academic planning and counseling tailored to high-ability students

ADVANCED SCIENCE
KNOWLEDGE/SKILLS

1. **Academic**
 a) Continuous progress at advanced level and rate of instruction in Science; usually includes advanced level research, contact/mentorship with scientist, use of technology and research design at level of sophistication matched to ability/need

2. **Creative**
 a) Opportunity to explore and apply advanced creative thinking and problem-solving strategies in science

3. **Leadership**
 a) Training in effective leadership techniques and leadership styles; career goals
 b) Exploration of possible leadership roles in science-related fields
 c) Effecting change in contexts related to interest areas
 d) Responsible use of influence; ethical issues in science and technology

4. **Social/Emotional and Counseling**
 a) Opportunities for competition; experience dealing with “failure”
 b) Dealing with dilemma of acceptance vs. high achievement; understanding anti-intellectualism
 c) Academic planning and counseling tailored to high-ability students

ADVANCED SOCIAL SCIENCE
KNOWLEDGE/SKILLS

1. **Academic**
 a) Continuous progress at advanced level and rate of instruction in Social Studies; depth and complexity matched to interests and ability

2. **Creative**
 a) Opportunity to explore and apply advanced creative thinking and problem-solving strategies to social issues

3. **Leadership**
 a) Training in effective leadership techniques especially as related to social sciences; career goals
 b) Exploration of possible leadership roles including political and social services, and effective leadership styles
 c) Effecting change in social/societal contexts (conflict resolution in complex contexts)
 d) Responsible use of influence
 e) Ethical decision-making

4. **Social/Emotional and Counseling**
 a) Opportunities for competition; experience dealing with “failure”
 b) Dealing with dilemma of acceptance vs. high achievement; understanding anti-intellectualism
 c) Academic planning and counseling tailored to high-ability students
Some students who are ready for advanced work may be identified as talented and gifted (TAG). The Oregon law (OARS 581-22-1310; ORS 343.407 to 343.413) requires that students identified as intellectually gifted and/or academically talented need to have their instructional level and rate of learning met.

The project is in nine sections: Introduction; Grade Level Samples (K-3, 4-5, 6-8, 9-12); Models and Graphic Organizers; Standards, TAG Plan and Assessment; Appendix with resources; and Overhead Presentation Masters. See page 15 for details.

Each lesson provides a TAG plan at the back of its section. If the lesson is implemented, the TAG Plan is a check off system to indicate targets to meet the student's needs. Teachers are invited to complete their student’s TAG Plan based on the focus they take with the lesson. See page 14 for an explanation of the form.

The differentiatied lessons relating to student goals is important and this document provides a starting point for all teachers to address the needs of the high ability student.

From the time of the sample lesson’s inception to the completion, several edits occurred. The implementation time may need adjusting by the teacher as well as appropriate assignments and resources. The listed books and internet sites should be reviewed and evaluated by the teacher before using.

Since the intent of this project is to provide samples of differentiated curriculum so teachers may create their own, page 16 provides a template for creating differentiated curriculum for high-end learners.

Although the samples in this document have been grouped into grade levels, teachers are encouraged to look at sections out of their own grade level for possible resources. Archetypal models, sample tasks, and resources by topics may offer some excellent ideas.

Contact me with suggestions, errors found, or questions about the document. I will forward your comments to the person most likely to assist you.

Jackie Buisman
jackietchr@attbi.com
GLOSSARY

ACADEMIC CONTENT STANDARDS
These standards define what students are expected to know and be able to do in English, mathematics, science, social sciences, the arts, second languages (world languages), and physical education.

ARCHETYPAL MODEL
A pattern or model from which other things of the same kind are made; prototype. Each sample includes a general model that can be used many times by the teacher for different activities. It incorporates the differentiation features and serves as a basis for developing specific task demands.

BENCHMARKS
In English, mathematics, science, social sciences, the arts, and physical education, a student’s progress toward the Certificate of Initial Mastery can be checked at or about grades 3, 5, 8, and 10. In April 2002, grade-level standards in mathematics were adopted by the State Board of Education. Grade-level standards are expected in English/language arts for grades K-3 in June 2002 and grades 4-8 and CIM in spring 2003. Note: Teachers who developed the enclosed samples used the standards for 2001-2002.

CAREER-RELATED LEARNING STANDARDS
These standards define fundamental skills in the areas of personal management, problem solving, teamwork, communication, career development, and employment foundations.

CERTIFICATE OF ADVANCED MASTERY (CAM)
An award earned by students who demonstrate application and extension of academic and career-related learning knowledge and skills in new and complex situations appropriate to the student’s personal, academic, and career interests and post-high school goals.

To earn a CAM, students must also develop an education plan and build an education profile, participate in career-related learning experiences as outlined in the education plan, and meet specific CIM performance standards in English, mathematics, science and social sciences through CIM assessment options.”

CERTIFICATE OF INITIAL MASTERY (CIM)
An award earned by students who have met CIM standards on state tests and classroom work samples in English, mathematics, and science, and local assessments in the arts and second languages (world languages). Requirements in social sciences and physical education will be phased in as part of the certificate.

COMMON CURRICULUM GOALS
The same course of study (curriculum) used in all Oregon school districts from kindergarten through grade 12. The Common Curriculum Goals include the academic content standards and essential learning skills.

CRITERION-REFERENCED TEST
A test comparing student work to a predetermined level of performance, or standard. The Oregon Statewide Assessment is a criterion-referenced test.

DIFFERENTIATION FEATURES FOR CURRICULUM MODIFICATION
(For more details see Introduction on page 5).

Acceleration – Students are:
- Assigned fewer tasks to master standard of learning
- Assessed earlier or prior to teaching
- Clustered by higher order thinking

Complexity – Students:
- Use multiple higher-level skills
- Have additional variables to study
- Use multiple resources

Depth – Students:
- Study a concept in multiple applications
- Conducts original research
- Develops a product

Challenge – Students:
- Use advanced resources
- Use sophisticated content stimuli
- Make cross-disciplinary applications
- Make reasoning explicit

Creativity – Students:
- Design and/or construct a model based on principles or criteria
- Provided alternatives for tasks, products, and assessments
- Present oral and written communication to a real world audience
Norm-Referenced Test
A test comparing student work to a national sample or “norm” group of students.

Oregon Statewide Assessment System
Official name for state tests and work samples.

Organizing Overarching Concepts
Conceptual learning for the gifted puts a premium on providing students with a good scaffolding of important concepts that constitute the structure of each discipline as well as providing them with important pathways between disciplines so that separate aspects of knowledge are understood as being integrated. A conceptual approach to curriculum focuses on large organizational themes and issues in order to frame the curriculum at an appropriate level. Some major concepts used frequently in curriculum development work are:
- Change
- Systems
- Models
- Patterns
- Origins
- Signs and symbols
- Power
- Scales

Organizing Higher Order Skills
Bloom’s Cognitive Taxonomy.
Paul’s Model of Concept Development – history as a study of change over time.
Paul’s Model of Reasoning – historical analysis and interpretation of data.

Performance Standards
These standards define the minimum scores expected of students on state tests and classroom assignments to achieve the benchmarks at grades 3, 5, 8 and 10.

Portfolio
Collection of student’s work.

Proficiency-Based Admission Standards System (PASS)
PASS is being phased in by the Oregon University System to connect standards for college admission with the content standards and benchmarks for the CIM and CAM. The State Board of Education adopted these standards in 1998. They appear annually in this document, aligned with the 10th grade benchmarks in each content area.

Scoring Guide
Specific, consistent criteria on a 1-6 point scale used to evaluate state performance assessments and classroom work samples. Scoring guides may be used by teachers, students, parents, and others.

Teachers who are supporting students in meeting the state standards need to become very familiar with the Official Scoring Guides. The official guides must be used to assess all work samples for the grades 3-10 benchmarks. Since the scoring guide serves as the primary assessment tool to determine whether students have met the standards through a collection of work samples, teachers need to carefully align their classroom assessments to the criteria described on the scoring guide.

Copies of 2002-03 scoring guides are on the Web at www.ode.state.or.us/asmt/resource/scorguides/.

Task Demand
For this differentiation curriculum project the components of task demand include:
- Archetypal Model
- Sample Task Activity
- Questions
- Implementation Time
- Resources
- Scoring Guide

Work Samples
Student work scored by a teacher on a 1-6 point scale using the official state scoring guide. This student work may be the product of classroom assignments in the case of writing, speaking, mathematical problem solving, and scientific inquiry, or on-demand assignments in the case of writing and mathematical problem solving.
Current Grade Level and Content
The title of each set of samples gives a suggested grade level and content area(s). Each set has its pages numbered in the title so they may be reproduced as a stand alone resource.

Acceleration Approach
In the implementation of standards for gifted learners, the samples are accelerated by bringing benchmarks down to the students’ current grade level. The arrow indicates bringing down 8th grade Benchmark/Grade Level Standard to the 5th grader. The yes for CRLS* (Career Related Learning Standards) indicates that the career learning experiences are integrated within the sample.

For gifted learners it is recommended that teachers use an accelerated pace of instruction, use fewer examples, and assess mastery earlier, as is deemed appropriate by student responsiveness.

| 3 | 4 | 5 | 6 | 7 | 8 | 9 | CIM | *CRLS/ CAM yes |

Academic Standards
On the right side of the sample the Common Curriculum Goals, Content Standards and Benchmarks/ Grade Level Standards are listed which are relevant to that sample.

Organizing Overarching Concept
Using higher order concepts to teach curriculum raises the level for gifted students. The writers indicate which organizing overarching concept is addressed (i.e., Systems, Patterns of Change, Models, Scales.) (See Glossary page 9.)

Organizing Higher Order Skills
Higher order thinking is a major focus with high ability students and the writers developed their task demand using one of these models.

Differentiation Features
The samples address several possible differentiation features. (See Glossary page 8). That include the features of:
- Acceleration
- Complexity
- Depth
- Challenge
- Creativity

Archetypal Model
Each sample includes a general model that can be used many times by the teacher for different activities. It incorporates the differentiation features and serves as a basis for developing specific task demands.

Task Demand
Task are designed from an archetypal model challenging students at their level of learning. The sample task demands may be used as a starting point for developing differentiated curriculum for the advanced learner. The suggested questions and implementation time are included, knowing the teacher will adapt to the course being taught.

Assessment
A scoring guide is an assessment tool used to judge the quality of student performance in relation to content standards.

Assessment tools provide specific criteria to describe a range of possible student responses and a consistent set of guidelines to rate student work.

Use of scoring guides to assess a student’s work can provide:
- feedback about student progress toward meeting the benchmarks;
- a common vocabulary for discussing the standards across grade levels and across districts throughout the state;
- a vehicle for meaningful self-evaluation and self-reflection;
- a focus for meaningful peer feedback among students.

In each differentiated sample, either original scoring guides are given or reference is made to the state’s scoring guides. (See Section III Appendix). Visit ODE Assessment/Scoring Guides at http://www.ode.state.or.us/asmt/resource/scorguides/.

Resources
Choice of resources is a major way to differentiate curriculum. They may include materials, models, internet sites and/or graphic organizers. (See Section VI Models and Graphic Organizers.)

The editor used the internet for many resources listed in this document. They should be reviewed and evaluated by the teacher before using.

TAG Plan
Each sample has a TAG Plan form that addresses specific needs of the talented and gifted. The teacher may use the form to indicate the needs being addressed, benchmark worked on, and career related learning experiences an important component of CAM.

The career-related learning standards (CRLSs) are fundamental skills essential for success in employment, college, family and community life. These skills are taught throughout the curriculum, integrated with academic learning and emphasized in the students career-related learning experiences. The following categories are provided for teacher reference:
- Personal Management
- Problem Solving
- Communication
- Teamwork
- Employment Foundations
- Career Development
A. Each page of each section is numbered in the right hand corner of the sample page.

B. Samples are at a grade level or fall within a grade level range.

C. A teacher may decide to pull out a single sample, so the pages within the lesson are also numbered.

The curriculum project has a total of 59 samples. They are divided into grade level sections:

Section II is K-3
Section III is 4-6
Section IV is 6-8
Section V is 9-12

B. Lessons are at a grade level or fall within a grade level range.

C. A teacher may decide to pull out a single lesson, so the pages within the lesson are numbered.
Tag Needs Addressed

Intellectually Gifted
- Advanced Critical Reasoning
- Challenging Resources
- Continuous Progress for Level and Rate*
- Decision Making; Ethical Use of Influence
- Leadership Training/Career
- Realistic Goal Setting
- Regular Interaction with Intellectual Peers
- Social-Emotional Issues; Support; Coping Strategies
- Advanced Academic Planning
- Opportunity for Competition/Failures/Successes
- Creative Problem Solving with Real Problems/Audiences
- Pursuit of Advanced Level Research
- Advanced Vocabulary Development

Advanced Science Knowledge/Skills
- Advanced Critical Thinking in Science
- Continuous Progress/Level and Rate* in Science
- Challenging Science Resources
- Creative Problem Solving Strategies in Science
- Science Advanced Vocabulary Development
- Leadership Training/Career
- Decision Making; Ethical Use of Influence
- Regular Interaction with Talented Science Peer
- Realistic Goal Setting
- Opportunity for Competition/Failures/Successes
- Advanced Academic Planning in Science

Academically Talented Math
- Advanced Critical Thinking in Math
- Continuous Progress/Level and Rate* in Math
- Challenging Math

Academically Talented Eng/LA
- Advanced Critical Thinking in LA
- Continuous Progress/Level and Rate* in LA
- Challenging LA Resources

Career Related Learning Standards for CAM - Certificate of Advanced Mastery
- Personal Management
- Problem Solving
- Communication
- Teamwork
- Employment Foundations
- Career Development

- Rate requires monitoring to ensure that the student was allowed to move ahead upon acquiring concepts.

Teacher Checks the Benchmark/Grade Level Standard Student is Pursuing

Math:
- 1
- 2
- 3
- CIM
- CAM
- PASS

English/LA:
- 1
- 2
- 3
- CIM
- CAM
- PASS

Science:
- 1
- 2
- 3
- CIM
- CAM
- PASS

Indicates needs being addressed for the intellectually gifted

Indicates needs being addressed for the academically talented.

Indicates CRLS for CAM needs being addressed.

Indicates the Benchmarks student is pursuing.

Student ___________________________ **Grade** _________

Teacher _________________________ **School** _______________________

Date Initiated ____________ **Date Completed** ____________

Check TAG Identification category:
- Intellectual
- Academic Math
- Academic LA
Differentiated Curriculum

List of the Sections Found in This Document:

<table>
<thead>
<tr>
<th>CHALLENGING HIGH END LEARNERS: ADDRESSING OREGON STANDARDS AND BENCHMARKS</th>
<th>Sections</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>I</td>
<td>1-16</td>
</tr>
<tr>
<td>K-3 SAMPLES</td>
<td>II</td>
<td>1-90</td>
</tr>
<tr>
<td>4-5 SAMPLES</td>
<td>III</td>
<td>1-128</td>
</tr>
<tr>
<td>6-8 SAMPLES</td>
<td>IV</td>
<td>1-136</td>
</tr>
<tr>
<td>9-12 SAMPLES</td>
<td>V</td>
<td>1-78</td>
</tr>
<tr>
<td>MODELS AND GRAPHIC ORGANIZERS</td>
<td>VI</td>
<td>1-90</td>
</tr>
<tr>
<td>STANDARDS, TAG PLANS, AND ASSESSMENTS</td>
<td>VII</td>
<td>1-42</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>VIII</td>
<td>1-22</td>
</tr>
<tr>
<td>OVERHEADS FOR PRESENTATION</td>
<td>IX</td>
<td>1-24</td>
</tr>
</tbody>
</table>

Curriculum options for gifted students at all levels should represent work beyond the standards both in level and scope.
~Joyce Van Tassel-Baska
<table>
<thead>
<tr>
<th>Current Grade Level:</th>
<th>Task Demand continued:</th>
<th>Academic Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content:</td>
<td></td>
<td>Common Curriculum Goals:</td>
</tr>
<tr>
<td>Acceleration Approach:</td>
<td></td>
<td>Content Standards:</td>
</tr>
<tr>
<td>Organizing Overarching Concept:</td>
<td></td>
<td>Benchmarks/Grade Level Standards:</td>
</tr>
<tr>
<td>Organizing Higher Order Skills:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differentiation Features:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archetypal Model:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task Demand:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>